ResNet50_vd_prune.yaml 2.8 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9
# global configs
Global:
  checkpoints: null
  pretrained_model: null 
  output_dir: ./output/
  device: gpu
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
D
dongshuilong 已提交
10
  epochs: 200
D
dongshuilong 已提交
11 12 13 14 15 16
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: ./inference

D
dongshuilong 已提交
17
# for quantization or prune model 
D
dongshuilong 已提交
18 19
Slim:
  ## for prune
D
dongshuilong 已提交
20
  prune:
D
dongshuilong 已提交
21 22
    name: fpgm
    pruned_ratio: 0.3
D
dongshuilong 已提交
23 24 25

# model architecture
Arch:
D
dongshuilong 已提交
26
  name: ResNet50_vd
D
dongshuilong 已提交
27
  class_num: 1000
D
dongshuilong 已提交
28
  pretrained: True
D
dongshuilong 已提交
29 30 31 32
 
# loss function config for traing/eval process
Loss:
  Train:
G
gaotingquan 已提交
33
    - CELoss:
D
dongshuilong 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
        weight: 1.0
        epsilon: 0.1
  Eval:
    - CELoss:
        weight: 1.0


Optimizer:
  name: Momentum
  momentum: 0.9
  lr:
    name: Cosine
    learning_rate: 0.1
  regularizer:
    name: 'L2'
    coeff: 0.00007


# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
D
dongshuilong 已提交
58
      cls_label_path: ./dataset/ILSVRC2012/train_list.txt
D
dongshuilong 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
      batch_transform_ops:
        - MixupOperator:
            alpha: 0.2

    sampler:
      name: DistributedBatchSampler
      batch_size: 64
      drop_last: False
      shuffle: True
    loader:
      num_workers: 4
      use_shared_memory: True

  Eval:
    dataset: 
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
D
dongshuilong 已提交
89
      cls_label_path: ./dataset/ILSVRC2012/val_list.txt
D
dongshuilong 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            resize_short: 256
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 64
      drop_last: False
      shuffle: False
    loader:
      num_workers: 4
      use_shared_memory: True

Infer:
  infer_imgs: docs/images/whl/demo.jpg
  batch_size: 10
  transforms:
    - DecodeImage:
        to_rgb: True
        channel_first: False
    - ResizeImage:
        resize_short: 256
    - CropImage:
        size: 224
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.485, 0.456, 0.406]
        std: [0.229, 0.224, 0.225]
        order: ''
    - ToCHWImage:
  PostProcess:
    name: Topk
    topk: 5
    class_id_map_file: ppcls/utils/imagenet1k_label_list.txt

Metric:
  Train:
  Eval:
    - TopkAcc:
        topk: [1, 5]