Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
4452565b
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4452565b
编写于
7月 26, 2021
作者:
D
dongshuilong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add slim support
上级
f82d1095
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
248 addition
and
0 deletion
+248
-0
tools/slim/config/ResNet50_vd.yaml
tools/slim/config/ResNet50_vd.yaml
+141
-0
tools/slim/train.py
tools/slim/train.py
+107
-0
未找到文件。
tools/slim/config/ResNet50_vd.yaml
0 → 100644
浏览文件 @
4452565b
# global configs
Global
:
checkpoints
:
null
# pretrained_model: ./output/ResNet50_vd/epoch_29
pretrained_model
:
null
output_dir
:
./output/
device
:
gpu
save_interval
:
1
eval_during_train
:
True
eval_interval
:
1
epochs
:
30
print_batch_step
:
10
use_visualdl
:
False
# used for static mode and model export
image_shape
:
[
3
,
224
,
224
]
save_inference_dir
:
./inference
# for paddleslim
Slim
:
# for quantalization
quant
:
name
:
pact
## for prune
#prune:
# name: fpgm
# prune_ratio: 0.3
# model architecture
Arch
:
name
:
MobileNetV3_large_x1_0
class_num
:
1000
# loss function config for traing/eval process
Loss
:
Train
:
-
MixCELoss
:
weight
:
1.0
epsilon
:
0.1
Eval
:
-
CELoss
:
weight
:
1.0
Optimizer
:
name
:
Momentum
momentum
:
0.9
lr
:
name
:
Cosine
learning_rate
:
0.1
regularizer
:
name
:
'
L2'
coeff
:
0.00007
# data loader for train and eval
DataLoader
:
Train
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/train_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
RandCropImage
:
size
:
224
-
RandFlipImage
:
flip_code
:
1
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
batch_transform_ops
:
-
MixupOperator
:
alpha
:
0.2
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
True
loader
:
num_workers
:
4
use_shared_memory
:
True
Eval
:
dataset
:
name
:
ImageNetDataset
image_root
:
./dataset/ILSVRC2012/
cls_label_path
:
./dataset/ILSVRC2012/val_list.txt
transform_ops
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
sampler
:
name
:
DistributedBatchSampler
batch_size
:
64
drop_last
:
False
shuffle
:
False
loader
:
num_workers
:
4
use_shared_memory
:
True
Infer
:
infer_imgs
:
docs/images/whl/demo.jpg
batch_size
:
10
transforms
:
-
DecodeImage
:
to_rgb
:
True
channel_first
:
False
-
ResizeImage
:
resize_short
:
256
-
CropImage
:
size
:
224
-
NormalizeImage
:
scale
:
1.0/255.0
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
order
:
'
'
-
ToCHWImage
:
PostProcess
:
name
:
Topk
topk
:
5
class_id_map_file
:
ppcls/utils/imagenet1k_label_list.txt
Metric
:
Train
:
Eval
:
-
TopkAcc
:
topk
:
[
1
,
5
]
tools/slim/train.py
0 → 100644
浏览文件 @
4452565b
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
,
division
,
print_function
import
os
import
sys
import
paddle
__dir__
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
__dir__
,
'../../'
)))
from
paddleslim.dygraph.quant
import
QAT
from
ppcls.engine.trainer
import
Trainer
from
ppcls.utils
import
config
,
logger
from
ppcls.utils.save_load
import
load_dygraph_pretrain
quant_config
=
{
# weight preprocess type, default is None and no preprocessing is performed.
'weight_preprocess_type'
:
None
,
# activation preprocess type, default is None and no preprocessing is performed.
'activation_preprocess_type'
:
None
,
# weight quantize type, default is 'channel_wise_abs_max'
'weight_quantize_type'
:
'channel_wise_abs_max'
,
# activation quantize type, default is 'moving_average_abs_max'
'activation_quantize_type'
:
'moving_average_abs_max'
,
# weight quantize bit num, default is 8
'weight_bits'
:
8
,
# activation quantize bit num, default is 8
'activation_bits'
:
8
,
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
'dtype'
:
'int8'
,
# window size for 'range_abs_max' quantization. default is 10000
'window_size'
:
10000
,
# The decay coefficient of moving average, default is 0.9
'moving_rate'
:
0.9
,
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
'quantizable_layer_type'
:
[
'Conv2D'
,
'Linear'
],
}
class
Trainer_slim
(
Trainer
):
def
__init__
(
self
,
config
,
mode
=
"train"
):
super
().
__init__
(
config
,
mode
)
# self.pact = self.config["Slim"].get("pact", False)
self
.
pact
=
True
if
self
.
pact
:
quant_config
[
"activation_preprocess_type"
]
=
"PACT"
self
.
quanter
=
QAT
(
config
=
quant_config
)
self
.
quanter
.
quantize
(
self
.
model
)
logger
.
info
(
"QAT model summary:"
)
paddle
.
summary
(
self
.
model
,
(
1
,
3
,
224
,
224
))
else
:
self
.
quanter
=
None
def
train
(
self
):
super
().
train
()
if
self
.
config
[
"Global"
].
get
(
"save_inference_dir"
,
None
):
self
.
export_inference_model
()
def
export_inference_model
(
self
):
if
os
.
path
.
exists
(
os
.
path
.
join
(
self
.
output_dir
,
self
.
config
[
"Arch"
][
"name"
],
"best_model.pdparams"
)):
load_dygraph_pretrain
(
self
.
model
,
os
.
path
.
join
(
self
.
output_dir
,
self
.
config
[
"Arch"
][
"name"
],
"best_model"
))
elif
self
.
config
[
"Global"
].
get
(
"pretraine_model"
,
False
)
and
os
.
path
.
exists
(
self
.
config
[
"Global"
][
"pretraine_model"
]
+
".pdparams"
):
load_dygraph_pretrain
(
self
.
model
,
self
.
config
[
"Global"
][
"pretraine_model"
])
else
:
raise
RuntimeError
(
"The best_model or pretraine_model should exist to generate inference model"
)
assert
self
.
quanter
self
.
quanter
.
save_quantized_model
(
self
.
model
,
os
.
path
.
join
(
self
.
config
[
"Global"
][
"save_inference_dir"
],
"inference"
),
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
]
+
config
[
"Global"
][
"image_shape"
],
dtype
=
'float32'
)
])
if
__name__
==
"__main__"
:
args
=
config
.
parse_args
()
config
=
config
.
get_config
(
args
.
config
,
overrides
=
args
.
override
,
show
=
False
)
trainer
=
Trainer_slim
(
config
,
mode
=
"train"
)
trainer
.
train
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录