提交 4452565b 编写于 作者: D dongshuilong

add slim support

上级 f82d1095
# global configs
Global:
checkpoints: null
# pretrained_model: ./output/ResNet50_vd/epoch_29
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 30
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# for paddleslim
Slim:
# for quantalization
quant:
name: pact
## for prune
#prune:
# name: fpgm
# prune_ratio: 0.3
# model architecture
Arch:
name: MobileNetV3_large_x1_0
class_num: 1000
# loss function config for traing/eval process
Loss:
Train:
- MixCELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.1
regularizer:
name: 'L2'
coeff: 0.00007
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
batch_transform_ops:
- MixupOperator:
alpha: 0.2
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/whl/demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
Eval:
- TopkAcc:
topk: [1, 5]
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import os
import sys
import paddle
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))
from paddleslim.dygraph.quant import QAT
from ppcls.engine.trainer import Trainer
from ppcls.utils import config, logger
from ppcls.utils.save_load import load_dygraph_pretrain
quant_config = {
# weight preprocess type, default is None and no preprocessing is performed.
'weight_preprocess_type': None,
# activation preprocess type, default is None and no preprocessing is performed.
'activation_preprocess_type': None,
# weight quantize type, default is 'channel_wise_abs_max'
'weight_quantize_type': 'channel_wise_abs_max',
# activation quantize type, default is 'moving_average_abs_max'
'activation_quantize_type': 'moving_average_abs_max',
# weight quantize bit num, default is 8
'weight_bits': 8,
# activation quantize bit num, default is 8
'activation_bits': 8,
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
'dtype': 'int8',
# window size for 'range_abs_max' quantization. default is 10000
'window_size': 10000,
# The decay coefficient of moving average, default is 0.9
'moving_rate': 0.9,
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
'quantizable_layer_type': ['Conv2D', 'Linear'],
}
class Trainer_slim(Trainer):
def __init__(self, config, mode="train"):
super().__init__(config, mode)
# self.pact = self.config["Slim"].get("pact", False)
self.pact = True
if self.pact:
quant_config["activation_preprocess_type"] = "PACT"
self.quanter = QAT(config=quant_config)
self.quanter.quantize(self.model)
logger.info("QAT model summary:")
paddle.summary(self.model, (1, 3, 224, 224))
else:
self.quanter = None
def train(self):
super().train()
if self.config["Global"].get("save_inference_dir", None):
self.export_inference_model()
def export_inference_model(self):
if os.path.exists(
os.path.join(self.output_dir, self.config["Arch"]["name"],
"best_model.pdparams")):
load_dygraph_pretrain(self.model,
os.path.join(self.output_dir,
self.config["Arch"]["name"],
"best_model"))
elif self.config["Global"].get(
"pretraine_model", False) and os.path.exists(self.config[
"Global"]["pretraine_model"] + ".pdparams"):
load_dygraph_pretrain(self.model,
self.config["Global"]["pretraine_model"])
else:
raise RuntimeError(
"The best_model or pretraine_model should exist to generate inference model"
)
assert self.quanter
self.quanter.save_quantized_model(
self.model,
os.path.join(self.config["Global"]["save_inference_dir"],
"inference"),
input_spec=[
paddle.static.InputSpec(
shape=[None] + config["Global"]["image_shape"],
dtype='float32')
])
if __name__ == "__main__":
args = config.parse_args()
config = config.get_config(
args.config, overrides=args.override, show=False)
trainer = Trainer_slim(config, mode="train")
trainer.train()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册