inception_v3.py 19.5 KB
Newer Older
F
Felix 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math

from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
F
Felix 已提交
29
from ppcls.utils.save_load import load_dygraph_pretrain
F
Felix 已提交
30 31 32 33

__all__ = ["InceptionV3"]


F
Felix 已提交
34 35 36
# InceptionV3 config
# key: inception blocks 
# value: conv num in different blocks
F
Felix 已提交
37
NET_CONFIG = {
F
Felix 已提交
38
    'inception_a':[[192, 256, 288], [32, 64, 64]], 
F
Felix 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    'inception_b':[288],   
    'inception_c':[[768, 768, 768, 768], [128, 160, 160, 192]],
    'inception_d':[768],   
    'inception_e':[1280,2048]
}


class ConvBNLayer(TheseusLayer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 groups=1,
F
Felix 已提交
54
                 act="relu"):
F
Felix 已提交
55 56 57 58 59 60 61 62 63 64 65 66
        super(ConvBNLayer, self).__init__()

        self.conv = Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias_attr=False)
        self.batch_norm = BatchNorm(
            num_filters,
F
Felix 已提交
67
            act=act)
F
Felix 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80

    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.batch_norm(y)
        return y

class InceptionStem(TheseusLayer):
    def __init__(self):
        super(InceptionStem, self).__init__()
        self.conv_1a_3x3 = ConvBNLayer(num_channels=3,
                                       num_filters=32,
                                       filter_size=3,
                                       stride=2,
F
Felix 已提交
81
                                       act="relu")
F
Felix 已提交
82 83 84 85
        self.conv_2a_3x3 = ConvBNLayer(num_channels=32,
                                       num_filters=32,
                                       filter_size=3,
                                       stride=1,
F
Felix 已提交
86
                                       act="relu")
F
Felix 已提交
87 88 89 90
        self.conv_2b_3x3 = ConvBNLayer(num_channels=32,
                                       num_filters=64,
                                       filter_size=3,
                                       padding=1,
F
Felix 已提交
91
                                       act="relu")
F
Felix 已提交
92 93 94 95 96

        self.maxpool = MaxPool2D(kernel_size=3, stride=2, padding=0)
        self.conv_3b_1x1 = ConvBNLayer(num_channels=64,
                                       num_filters=80,
                                       filter_size=1,
F
Felix 已提交
97
                                       act="relu")        
F
Felix 已提交
98 99 100
        self.conv_4a_3x3 = ConvBNLayer(num_channels=80,
                                       num_filters=192,
                                       filter_size=3,
F
Felix 已提交
101
                                       act="relu")
F
Felix 已提交
102 103 104 105 106 107 108 109 110 111 112 113
    def forward(self, x):
        y = self.conv_1a_3x3(x)
        y = self.conv_2a_3x3(y)
        y = self.conv_2b_3x3(y)
        y = self.maxpool(y)
        y = self.conv_3b_1x1(y)
        y = self.conv_4a_3x3(y)
        y = self.maxpool(y)
        return y

                         
class InceptionA(TheseusLayer):
F
Felix 已提交
114
    def __init__(self, num_channels, pool_features):
F
Felix 已提交
115 116 117 118
        super(InceptionA, self).__init__()
        self.branch1x1 = ConvBNLayer(num_channels=num_channels,
                                     num_filters=64,
                                     filter_size=1,
F
Felix 已提交
119
                                     act="relu") 
F
Felix 已提交
120 121 122
        self.branch5x5_1 = ConvBNLayer(num_channels=num_channels,
                                       num_filters=48, 
                                       filter_size=1, 
F
Felix 已提交
123
                                       act="relu")
F
Felix 已提交
124 125 126 127
        self.branch5x5_2 = ConvBNLayer(num_channels=48, 
                                       num_filters=64, 
                                       filter_size=5, 
                                       padding=2, 
F
Felix 已提交
128
                                       act="relu")
F
Felix 已提交
129 130 131 132

        self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels,
                                       num_filters=64, 
                                       filter_size=1, 
F
Felix 已提交
133
                                       act="relu")
F
Felix 已提交
134 135 136 137
        self.branch3x3dbl_2 = ConvBNLayer(num_channels=64,
                                       num_filters=96, 
                                       filter_size=3, 
                                       padding=1,
F
Felix 已提交
138
                                       act="relu")
F
Felix 已提交
139 140 141 142
        self.branch3x3dbl_3 = ConvBNLayer(num_channels=96,
                               num_filters=96, 
                               filter_size=3, 
                               padding=1,
F
Felix 已提交
143
                               act="relu")
F
Felix 已提交
144 145 146 147
        self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
                               num_filters=pool_features, 
                               filter_size=1, 
F
Felix 已提交
148
                               act="relu")
F
Felix 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

    def forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = self.branch_pool(x)
        branch_pool = self.branch_pool_conv(branch_pool)
        outputs = paddle.concat([branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=1)
        return outputs

    
class InceptionB(TheseusLayer):
F
Felix 已提交
166
    def __init__(self, num_channels):
F
Felix 已提交
167 168 169 170 171
        super(InceptionB, self).__init__()
        self.branch3x3 = ConvBNLayer(num_channels=num_channels,
                                     num_filters=384,
                                     filter_size=3,
                                     stride=2,
F
Felix 已提交
172
                                     act="relu") 
F
Felix 已提交
173 174 175
        self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=64, 
                                       filter_size=1, 
F
Felix 已提交
176
                                       act="relu")
F
Felix 已提交
177 178 179 180
        self.branch3x3dbl_2 = ConvBNLayer(num_channels=64, 
                                       num_filters=96, 
                                       filter_size=3, 
                                       padding=1,
F
Felix 已提交
181
                                       act="relu")
F
Felix 已提交
182 183 184 185
        self.branch3x3dbl_3 = ConvBNLayer(num_channels=96, 
                                       num_filters=96, 
                                       filter_size=3,
                                       stride=2,
F
Felix 已提交
186
                                       act="relu")
F
Felix 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        self.branch_pool = MaxPool2D(kernel_size=3, stride=2)
        
    def forward(self, x):
        branch3x3 = self.branch3x3(x)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = self.branch_pool(x)

        outputs = paddle.concat([branch3x3, branch3x3dbl, branch_pool], axis=1)

        return outputs

class InceptionC(TheseusLayer):
F
Felix 已提交
203
    def __init__(self, num_channels, channels_7x7):
F
Felix 已提交
204 205 206 207
        super(InceptionC, self).__init__()
        self.branch1x1 = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=192, 
                                       filter_size=1, 
F
Felix 已提交
208
                                       act="relu")
F
Felix 已提交
209 210


F
Felix 已提交
211 212 213 214
        self.branch7x7_1 = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=channels_7x7, 
                                       filter_size=1, 
                                       stride=1,
F
Felix 已提交
215
                                       act="relu")
F
Felix 已提交
216 217 218 219 220
        self.branch7x7_2 = ConvBNLayer(num_channels=channels_7x7,
                                       num_filters=channels_7x7, 
                                       filter_size=(1, 7), 
                                       stride=1,
                                       padding=(0, 3),
F
Felix 已提交
221
                                       act="relu")
F
Felix 已提交
222 223 224 225 226
        self.branch7x7_3 = ConvBNLayer(num_channels=channels_7x7,
                                       num_filters=192, 
                                       filter_size=(7, 1), 
                                       stride=1,
                                       padding=(3, 0),
F
Felix 已提交
227
                                       act="relu")
F
Felix 已提交
228 229 230 231
        
        self.branch7x7dbl_1 = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=channels_7x7, 
                                       filter_size=1, 
F
Felix 已提交
232
                                       act="relu")
F
Felix 已提交
233 234 235 236
        self.branch7x7dbl_2 = ConvBNLayer(num_channels=channels_7x7,  
                                       num_filters=channels_7x7, 
                                       filter_size=(7, 1), 
                                       padding = (3, 0),
F
Felix 已提交
237
                                       act="relu")
F
Felix 已提交
238 239 240 241
        self.branch7x7dbl_3 = ConvBNLayer(num_channels=channels_7x7, 
                                       num_filters=channels_7x7, 
                                       filter_size=(1, 7), 
                                       padding = (0, 3),
F
Felix 已提交
242
                                       act="relu")
F
Felix 已提交
243 244 245 246
        self.branch7x7dbl_4 = ConvBNLayer(num_channels=channels_7x7,  
                                       num_filters=channels_7x7, 
                                       filter_size=(7, 1), 
                                       padding = (3, 0),
F
Felix 已提交
247
                                       act="relu")
F
Felix 已提交
248 249 250 251
        self.branch7x7dbl_5 = ConvBNLayer(num_channels=channels_7x7, 
                                       num_filters=192, 
                                       filter_size=(1, 7), 
                                       padding = (0, 3),
F
Felix 已提交
252
                                       act="relu")
F
Felix 已提交
253 254 255 256 257
       
        self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels,
                                       num_filters=192, 
                                       filter_size=1, 
F
Felix 已提交
258
                                       act="relu")
F
Felix 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        
    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = self.branch_pool(x)
        branch_pool = self.branch_pool_conv(branch_pool)

        outputs = paddle.concat([branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=1)
        
        return outputs
    
class InceptionD(TheseusLayer):
F
Felix 已提交
281
    def __init__(self, num_channels):
F
Felix 已提交
282 283 284 285
        super(InceptionD, self).__init__()
        self.branch3x3_1 = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=192, 
                                       filter_size=1, 
F
Felix 已提交
286
                                       act="relu")
F
Felix 已提交
287 288 289 290
        self.branch3x3_2 = ConvBNLayer(num_channels=192, 
                                       num_filters=320, 
                                       filter_size=3, 
                                       stride=2,
F
Felix 已提交
291
                                       act="relu")
F
Felix 已提交
292 293 294
        self.branch7x7x3_1 = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=192, 
                                       filter_size=1, 
F
Felix 已提交
295
                                       act="relu")
F
Felix 已提交
296 297 298 299
        self.branch7x7x3_2 = ConvBNLayer(num_channels=192,
                                       num_filters=192, 
                                       filter_size=(1, 7), 
                                       padding=(0, 3),
F
Felix 已提交
300
                                       act="relu")
F
Felix 已提交
301 302 303 304
        self.branch7x7x3_3 = ConvBNLayer(num_channels=192, 
                                       num_filters=192, 
                                       filter_size=(7, 1), 
                                       padding=(3, 0),
F
Felix 已提交
305
                                       act="relu")
F
Felix 已提交
306 307 308 309
        self.branch7x7x3_4 = ConvBNLayer(num_channels=192,  
                                       num_filters=192, 
                                       filter_size=3, 
                                       stride=2,
F
Felix 已提交
310
                                       act="relu")
F
Felix 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        self.branch_pool = MaxPool2D(kernel_size=3, stride=2)

    def forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)

        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

        branch_pool = self.branch_pool(x)
        
        outputs = paddle.concat([branch3x3, branch7x7x3, branch_pool], axis=1)
        return outputs
    
class InceptionE(TheseusLayer):
F
Felix 已提交
328
    def __init__(self, num_channels):
F
Felix 已提交
329 330 331 332
        super(InceptionE, self).__init__()
        self.branch1x1 = ConvBNLayer(num_channels=num_channels,
                                       num_filters=320, 
                                       filter_size=1, 
F
Felix 已提交
333
                                       act="relu")
F
Felix 已提交
334 335 336
        self.branch3x3_1 = ConvBNLayer(num_channels=num_channels,
                                       num_filters=384, 
                                       filter_size=1, 
F
Felix 已提交
337
                                       act="relu")
F
Felix 已提交
338 339 340 341
        self.branch3x3_2a = ConvBNLayer(num_channels=384, 
                                       num_filters=384, 
                                       filter_size=(1, 3), 
                                       padding=(0, 1),
F
Felix 已提交
342
                                       act="relu")
F
Felix 已提交
343 344 345 346
        self.branch3x3_2b = ConvBNLayer(num_channels=384, 
                                       num_filters=384, 
                                       filter_size=(3, 1), 
                                       padding=(1, 0),
F
Felix 已提交
347
                                       act="relu")
F
Felix 已提交
348 349 350 351
        
        self.branch3x3dbl_1 = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=448, 
                                       filter_size=1, 
F
Felix 已提交
352
                                       act="relu")
F
Felix 已提交
353 354 355 356
        self.branch3x3dbl_2 = ConvBNLayer(num_channels=448, 
                                       num_filters=384, 
                                       filter_size=3, 
                                       padding=1,
F
Felix 已提交
357
                                       act="relu")
F
Felix 已提交
358 359 360 361
        self.branch3x3dbl_3a = ConvBNLayer(num_channels=384,
                                       num_filters=384, 
                                       filter_size=(1, 3), 
                                       padding=(0, 1),
F
Felix 已提交
362
                                       act="relu")
F
Felix 已提交
363 364 365 366
        self.branch3x3dbl_3b = ConvBNLayer(num_channels=384,
                                       num_filters=384, 
                                       filter_size=(3, 1), 
                                       padding=(1, 0),
F
Felix 已提交
367
                                       act="relu")
F
Felix 已提交
368 369 370 371
        self.branch_pool = AvgPool2D(kernel_size=3, stride=1, padding=1, exclusive=False)
        self.branch_pool_conv = ConvBNLayer(num_channels=num_channels, 
                                       num_filters=192, 
                                       filter_size=1, 
F
Felix 已提交
372
                                       act="relu")
F
Felix 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = paddle.concat(branch3x3, axis=1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = paddle.concat(branch3x3dbl, axis=1)

        branch_pool = self.branch_pool(x)
        branch_pool = self.branch_pool_conv(branch_pool)

        outputs = paddle.concat([branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=1)
        return outputs   


class Inception_V3(TheseusLayer):
F
Felix 已提交
399 400 401 402 403 404

    def __init__(self, 
                 config, 
                 class_num=1000, 
                 pretrained=False,
                 **kwargs):
F
Felix 已提交
405 406 407 408 409 410 411 412 413 414
        super(Inception_V3, self).__init__()

        self.inception_a_list = config['inception_a']
        self.inception_c_list = config['inception_c']
        self.inception_b_list = config['inception_b']
        self.inception_d_list = config['inception_d']
        self.inception_e_list = config ['inception_e']
        
        self.inception_stem = InceptionStem()

F
Felix 已提交
415
        self.inception_block_list = nn.LayerList()
F
Felix 已提交
416 417
        for i in range(len(self.inception_a_list[0])):
            inception_a = InceptionA(self.inception_a_list[0][i], 
F
Felix 已提交
418
                                     self.inception_a_list[1][i])
F
Felix 已提交
419 420 421
            self.inception_block_list.append(inception_a)

        for i in range(len(self.inception_b_list)):
F
Felix 已提交
422
            inception_b = InceptionB(self.inception_b_list[i])
F
Felix 已提交
423 424 425 426
            self.inception_block_list.append(inception_b)

        for i in range(len(self.inception_c_list[0])):
            inception_c = InceptionC(self.inception_c_list[0][i], 
F
Felix 已提交
427
                                     self.inception_c_list[1][i])
F
Felix 已提交
428 429 430
            self.inception_block_list.append(inception_c)

        for i in range(len(self.inception_d_list)):
F
Felix 已提交
431
            inception_d = InceptionD(self.inception_d_list[i])
F
Felix 已提交
432 433 434
            self.inception_block_list.append(inception_d)

        for i in range(len(self.inception_e_list)):
F
Felix 已提交
435
            inception_e = InceptionE(self.inception_e_list[i])
F
Felix 已提交
436 437 438 439 440 441 442 443 444
            self.inception_block_list.append(inception_e)
 
        self.gap = AdaptiveAvgPool2D(1)
        self.drop = Dropout(p=0.2, mode="downscale_in_infer")
        stdv = 1.0 / math.sqrt(2048 * 1.0)
        self.out = Linear(
            2048,
            class_num,
            weight_attr=ParamAttr(
F
Felix 已提交
445 446
                initializer=Uniform(-stdv, stdv)),
            bias_attr=ParamAttr())
F
Felix 已提交
447

F
Felix 已提交
448 449 450
        if pretrained is not None:
            load_dygraph_pretrain(self, pretrained)

F
Felix 已提交
451 452 453 454 455 456 457 458 459 460 461
    def forward(self, x):
        y = self.inception_stem(x)
        for inception_block in self.inception_block_list:
           y = inception_block(y)
        y = self.gap(y)
        y = paddle.reshape(y, shape=[-1, 2048])
        y = self.drop(y)
        y = self.out(y)
        return y


F
Felix 已提交
462 463 464 465 466 467 468 469


def InceptionV3(**kwargs):
    """
    InceptionV3
    Args:
        kwargs: 
            class_num: int=1000. Output dim of last fc layer.
F
Felix 已提交
470
            pretrained: str, pretrained model file
F
Felix 已提交
471 472 473 474 475 476
    Returns:
        model: nn.Layer. Specific `InceptionV3` model 
    """
    model = Inception_V3(NET_CONFIG, **kwargs)
    return model