cls.cpp 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/cls.h>

namespace PaddleClas {

void Classifier::LoadModel(const std::string &model_path,
                           const std::string &params_path) {
  paddle_infer::Config config;
  config.SetModel(model_path, params_path);

  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
    if (this->use_tensorrt_) {
      config.EnableTensorRtEngine(
          1 << 20, 1, 3,
          this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
                          : paddle_infer::Config::Precision::kFloat32,
          false, false);
    }
  } else {
    config.DisableGpu();
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
    }
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }

  config.SwitchUseFeedFetchOps(false);
  // true for multiple input
  config.SwitchSpecifyInputNames(true);

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
  config.DisableGlogInfo();

  this->predictor_ = CreatePredictor(config);
}

55 56
void Classifier::Run(cv::Mat &img, std::vector<float> &out_data,
                     std::vector<double> &times) {
57 58 59
  cv::Mat srcimg;
  cv::Mat resize_img;
  img.copyTo(srcimg);
60
  std::vector<double> time;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

  auto preprocess_start = std::chrono::system_clock::now();
  this->resize_op_.Run(img, resize_img, this->resize_short_,
                       this->resize_size_);

  this->normalize_op_.Run(&resize_img, this->mean_, this->std_, this->scale_);
  std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
  this->permute_op_.Run(&resize_img, input.data());

  auto input_names = this->predictor_->GetInputNames();
  auto input_t = this->predictor_->GetInputHandle(input_names[0]);
  input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
  auto preprocess_end = std::chrono::system_clock::now();

  auto infer_start = std::chrono::system_clock::now();
  input_t->CopyFromCpu(input.data());
  this->predictor_->Run();

  auto output_names = this->predictor_->GetOutputNames();
  auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
  std::vector<int> output_shape = output_t->shape();
  int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
                                std::multiplies<int>());

  out_data.resize(out_num);
  output_t->CopyToCpu(out_data.data());
  auto infer_end = std::chrono::system_clock::now();

89 90 91 92
  // auto postprocess_start = std::chrono::system_clock::now();
  // int maxPosition =
  //     max_element(out_data.begin(), out_data.end()) - out_data.begin();
  // auto postprocess_end = std::chrono::system_clock::now();
93 94 95

  std::chrono::duration<float> preprocess_diff =
      preprocess_end - preprocess_start;
96
  time.push_back(double(preprocess_diff.count()));
97
  std::chrono::duration<float> inference_diff = infer_end - infer_start;
98 99 100 101 102 103 104 105 106 107 108 109 110
  double inference_cost_time = double(inference_diff.count());
  time.push_back(inference_cost_time);
  // std::chrono::duration<float> postprocess_diff =
  //     postprocess_end - postprocess_start;
  time.push_back(0);

  // std::cout << "result: " << std::endl;
  // std::cout << "\tclass id: " << maxPosition << std::endl;
  // std::cout << std::fixed << std::setprecision(10)
  //           << "\tscore: " << double(out_data[maxPosition]) << std::endl;
  times[0] += time[0];
  times[1] += time[1];
  times[2] += time[2];
111 112 113
}

} // namespace PaddleClas