MobileViTv3_x0_75.yaml 3.7 KB
Newer Older
Y
update  
Yang Nie 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: ./output/
  device: gpu
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
  epochs: 300
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 256, 256]
  save_inference_dir: ./inference
  use_dali: False
17
  update_freq: 3  # for 4 gpus
Y
update  
Yang Nie 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

# mixed precision training
AMP:
  scale_loss: 65536
  use_dynamic_loss_scaling: True
  # O1: mixed fp16
  level: O1

# model ema
EMA:
  decay: 0.9995

# model architecture
Arch:
  name: MobileViTv3_x0_75
  class_num: 1000
  classifier_dropout: 0.

# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
        epsilon: 0.1
  Eval:
    - CELoss:
        weight: 1.0

Optimizer:
  name: AdamW
  beta1: 0.9
  beta2: 0.999
  epsilon: 1e-8
  weight_decay: 0.05
  one_dim_param_no_weight_decay: True
  lr:
    name: Cosine
55
    learning_rate: 0.002  # for total batch size 1020
Y
update  
Yang Nie 已提交
56
    eta_min: 0.0002
Y
Yang Nie 已提交
57
    warmup_epoch: 16  # 20000 iterations
Y
update  
Yang Nie 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    warmup_start_lr: 1e-6
  clip_norm: 10

# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/train_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
            backend: pil
        - RandCropImage:
            size: 256
            interpolation: bicubic
            backend: pil
            use_log_aspect: True
        - RandFlipImage:
            flip_code: 1
Y
Yang Nie 已提交
80 81
        - RandAugmentV3:
            num_layers: 2
Y
update  
Yang Nie 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94
            interpolation: bicubic
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.0, 0.0, 0.0]
            std: [1.0, 1.0, 1.0]
            order: ''
        - RandomErasing:
            EPSILON: 0.25
            sl: 0.02
            sh: 1.0/3.0
            r1: 0.3
            attempt: 10
            use_log_aspect: True
95
            mode: const
Y
update  
Yang Nie 已提交
96 97 98 99
      batch_transform_ops:
        - OpSampler:
            MixupOperator:
              alpha: 0.2
100
              prob: 0.25
Y
update  
Yang Nie 已提交
101 102
            CutmixOperator:
              alpha: 1.0
103
              prob: 0.25
Y
update  
Yang Nie 已提交
104 105
    sampler:
      name: DistributedBatchSampler
106
      batch_size: 85
Y
update  
Yang Nie 已提交
107
      drop_last: False
Y
Yang Nie 已提交
108
      shuffle: True
Y
update  
Yang Nie 已提交
109 110 111 112
    loader:
      num_workers: 4
      use_shared_memory: True
  Eval:
113
    dataset:
Y
update  
Yang Nie 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/val_list.txt
      transform_ops:
        - DecodeImage:
            to_np: False
            channel_first: False
            backend: pil
        - ResizeImage:
            resize_short: 288
            interpolation: bicubic
            backend: pil
        - CropImage:
            size: 256
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.0, 0.0, 0.0]
            std: [1.0, 1.0, 1.0]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 128
      drop_last: False
      shuffle: False
    loader:
      num_workers: 4
      use_shared_memory: True

Infer:
  infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  batch_size: 10
  transforms:
    - DecodeImage:
        to_np: False
        channel_first: False
        backend: pil
    - ResizeImage:
        resize_short: 288
        interpolation: bicubic
        backend: pil
    - CropImage:
        size: 256
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.0, 0.0, 0.0]
        std: [1.0, 1.0, 1.0]
        order: ''
    - ToCHWImage:
  PostProcess:
    name: Topk
    topk: 5
    class_id_map_file: ppcls/utils/imagenet1k_label_list.txt

Metric:
  Train:
    - TopkAcc:
        topk: [1, 5]
  Eval:
    - TopkAcc:
        topk: [1, 5]