提交 de4129ba 编写于 作者: Y Yang Nie 提交者: Tingquan Gao

update

上级 dc4fdba0
# MobileviTv3
-----
## 目录
- [1. 模型介绍](#1)
- [1.1 模型简介](#1.1)
- [1.2 模型指标](#1.2)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
- [4.1 推理模型准备](#4.1)
- [4.2 基于 Python 预测引擎推理](#4.2)
- [4.3 基于 C++ 预测引擎推理](#4.3)
- [4.4 服务化部署](#4.4)
- [4.5 端侧部署](#4.5)
- [4.6 Paddle2ONNX 模型转换与预测](#4.6)
<a name='1'></a>
## 1. 模型介绍
<a name='1.1'></a>
### 1.1 模型简介
MobileViTv3 是一个结合 CNN 和 ViT 的轻量级模型,用于移动视觉任务。通过 MobileViTv3-block 解决了 MobileViTv1 的扩展问题并简化了学习任务,从而得倒了 MobileViTv3-XXS、XS 和 S 模型,在 ImageNet-1k、ADE20K、COCO 和 PascalVOC2012 数据集上表现优于 MobileViTv1。
通过将提出的融合块添加到 MobileViTv2 中,创建 MobileViTv3-0.5、0.75 和 1.0 模型,在ImageNet-1k、ADE20K、COCO和PascalVOC2012数据集上给出了比 MobileViTv2 更好的准确性数据。[论文地址](https://arxiv.org/abs/2209.15159)
<a name='1.2'></a>
### 1.2 模型指标
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPs<br>(G) | Params<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| MobileViTv3_XXS | 0.7087 | 0.8976 | 0.7098 | - | 289.02 | 1.25 |
| MobileViTv3_XS | 0.7663 | 0.9332 | 0.7671 | - | 926.98 | 2.49 |
| MobileViTv3_S | 0.7928 | 0.9454 | 0.7930 | - | 1841.39 | 5.76 |
| MobileViTv3_XXS_L2 | 0.7028 | 0.8942 | 0.7023 | - | 256.97 | 1.15 |
| MobileViTv3_XS_L2 | 0.7607 | 0.9300 | 0.7610 | - | 852.82 | 2.26 |
| MobileViTv3_S_L2 | 0.7907 | 0.9440 | 0.7906 | - | 1651.96 | 5.17 |
| MobileViTv3_x0_5 | 0.7200 | 0.9083 | 0.7233 | - | 481.33 | 1.43 |
| MobileViTv3_x0_75 | 0.7626 | 0.9308 | 0.7655 | - | 1064.48 | 3.00 |
| MobileViTv3_x1_0 | 0.7838 | 0.9421 | 0.7864 | - | 1875.96 | 5.14 |
**备注:** PaddleClas 所提供的该系列模型的预训练模型权重,均是基于其官方提供的权重转得。
<a name="2"></a>
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/MobileViTv3/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
**备注:** 由于 MobileViT 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
<a name="4"></a>
## 4. 模型推理部署
<a name="4.1"></a>
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 完成模型的推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="4.5"></a>
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="4.6"></a>
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
......@@ -796,15 +796,24 @@ DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标
<a name="MobileViT"></a>
## MobileViT 系列 <sup>[[42](#ref42)]</sup>
## MobileViT 系列 <sup>[[42](#ref42)][[51](#ref51)]</sup>
关于 MobileViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[MobileViT 系列模型文档](MobileViT.md)
关于 MobileViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[MobileViT 系列模型文档](MobileViT.md), [MobileViTv3 系列模型文档](MobileViTv3.md)
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| MobileViT_XXS | 0.6867 | 0.8878 | - | - | - | 337.24 | 1.28 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XXS_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XXS_infer.tar) |
| MobileViT_XS | 0.7454 | 0.9227 | - | - | - | 930.75 | 2.33 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XS_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XS_infer.tar) |
| MobileViT_S | 0.7814 | 0.9413 | - | - | - | 1849.35 | 5.59 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_S_infer.tar) |
| MobileViT_XXS | 0.6867 | 0.8878 | - | - | - | 337.24 | 1.28 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XXS_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XXS_infer.tar) |
| MobileViT_XS | 0.7454 | 0.9227 | - | - | - | 930.75 | 2.33 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XS_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XS_infer.tar) |
| MobileViT_S | 0.7814 | 0.9413 | - | - | - | 1849.35 | 5.59 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_S_infer.tar) |
| MobileViTv3_XXS | 0.7087 | 0.8976 | - | - | - | 289.02 | 1.25 | [下载链接]() | [下载链接]() |
| MobileViTv3_XS | 0.7663 | 0.9332 | - | - | - | 926.98 | 2.49 | [下载链接]() | [下载链接]() |
| MobileViTv3_S | 0.7928 | 0.9454 | - | - | - | 1841.39 | 5.76 | [下载链接]() | [下载链接]() |
| MobileViTv3_XXS_L2 | 0.7028 | 0.8942 | - | - | - | 256.97 | 1.15 | [下载链接]() | [下载链接]() |
| MobileViTv3_XS_L2 | 0.7607 | 0.9300 | - | - | - | 852.82 | 2.26 | [下载链接]() | [下载链接]() |
| MobileViTv3_S_L2 | 0.7907 | 0.9440 | - | - | - | 1651.96 | 5.17 | [下载链接]() | [下载链接]() |
| MobileViTv3_x0_5 | 0.7200 | 0.9083 | - | - | - | 481.33 | 1.43 | [下载链接]() | [下载链接]() |
| MobileViTv3_x0_75 | 0.7626 | 0.9308 | - | - | - | 1064.48 | 3.00 | [下载链接]() | [下载链接]() |
| MobileViTv3_x1_0 | 0.7838 | 0.9421 | - | - | - | 1875.96 | 5.14 | [下载链接]() | [下载链接]() |
<a name='reference'></a>
......@@ -910,3 +919,5 @@ TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE.
<a name="ref49">[49]</a>Mingyuan Mao, Renrui Zhang, Honghui Zheng, Peng Gao, Teli Ma, Yan Peng, Errui Ding, Baochang Zhang, Shumin Han. Dual-stream Network for Visual Recognition.
<a name="ref50">[50]</a>Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo. Swin Transformer V2: Scaling Up Capacity and Resolution
<a name="ref50">[51]</a>Wadekar, Shakti N. and Chaurasia, Abhishek. MobileViTv3: Mobile-Friendly Vision Transformer with Simple and Effective Fusion of Local, Global and Input Features
......@@ -78,7 +78,7 @@ from .model_zoo.cae import cae_base_patch16_224, cae_large_patch16_224
from .model_zoo.cvt import CvT_13_224, CvT_13_384, CvT_21_224, CvT_21_384, CvT_W24_384
from .model_zoo.micronet import MicroNet_M0, MicroNet_M1, MicroNet_M2, MicroNet_M3
from .model_zoo.mobilenext import MobileNeXt_x0_35, MobileNeXt_x0_5, MobileNeXt_x0_75, MobileNeXt_x1_0, MobileNeXt_x1_4
from .model_zoo.mobilevit_v3 import MobileViTv3_XXS, MobileViTv3_XS, MobileViTv3_S, MobileViTv3_x0_5, MobileViTv3_x0_75, MobileViTv3_x1_0
from .model_zoo.mobilevit_v3 import MobileViTv3_XXS, MobileViTv3_XS, MobileViTv3_S, MobileViTv3_XXS_L2, MobileViTv3_XS_L2, MobileViTv3_S_L2, MobileViTv3_x0_5, MobileViTv3_x0_75, MobileViTv3_x1_0
from .variant_models.resnet_variant import ResNet50_last_stage_stride1
from .variant_models.resnet_variant import ResNet50_adaptive_max_pool2d
......
......@@ -29,6 +29,9 @@ MODEL_URLS = {
"MobileViTv3_XXS": "",
"MobileViTv3_XS": "",
"MobileViTv3_S": "",
"MobileViTv3_XXS_L2": "",
"MobileViTv3_XS_L2": "",
"MobileViTv3_S_L2": "",
"MobileViTv3_x0_5": "",
"MobileViTv3_x0_75": "",
"MobileViTv3_x1_0": "",
......@@ -319,7 +322,7 @@ class MobileViTv3Block(nn.Layer):
transposed_fm = reshaped_fm.transpose([0, 3, 2, 1])
# [B, P, N, C] --> [BP, N, C]
patches = transposed_fm.reshape(
[batch_size * patch_area, num_patches, -1])
[batch_size * patch_area, num_patches, in_channels])
info_dict = {
"orig_size": (orig_h, orig_w),
......@@ -339,7 +342,7 @@ class MobileViTv3Block(nn.Layer):
# [BP, N, C] --> [B, P, N, C]
patches = patches.reshape([
info_dict["batch_size"], self.patch_area,
info_dict["total_patches"], -1
info_dict["total_patches"], patches.shape[2]
])
batch_size, pixels, num_patches, channels = patches.shape
......@@ -399,6 +402,7 @@ class MobileViTv3Block(nn.Layer):
class LinearSelfAttention(nn.Layer):
def __init__(self, embed_dim, attn_dropout=0.0, bias=True):
super().__init__()
self.embed_dim = embed_dim
self.qkv_proj = nn.Conv2D(
embed_dim, 1 + (2 * embed_dim), 1, bias_attr=bias)
self.attn_dropout = nn.Dropout(p=attn_dropout)
......@@ -428,7 +432,7 @@ class LinearSelfAttention(nn.Layer):
# combine context vector with values
# [B, d, P, N] * [B, d, P, 1] --> [B, d, P, N]
out = F.relu(value) * context_vector.expand_as(value)
out = F.relu(value) * context_vector
out = self.out_proj(out)
return out
......@@ -552,10 +556,11 @@ class MobileViTv3Block_v2(nn.Layer):
# [B, C, H, W] --> [B, C, P, N]
patches = F.unfold(
feature_map,
kernel_sizes=(self.patch_h, self.patch_w),
stride=(self.patch_h, self.patch_w))
kernel_sizes=[self.patch_h, self.patch_w],
strides=[self.patch_h, self.patch_w])
n_patches = img_h * img_w // (self.patch_h * self.patch_w)
patches = patches.reshape(
[batch_size, in_channels, self.patch_h * self.patch_w, -1])
[batch_size, in_channels, self.patch_h * self.patch_w, n_patches])
return patches, (img_h, img_w)
......@@ -567,9 +572,9 @@ class MobileViTv3Block_v2(nn.Layer):
feature_map = F.fold(
patches,
output_sizes=output_size,
kernel_sizes=(self.patch_h, self.patch_w),
stride=(self.patch_h, self.patch_w))
output_size,
kernel_sizes=[self.patch_h, self.patch_w],
strides=[self.patch_h, self.patch_w])
return feature_map
......@@ -656,16 +661,16 @@ class MobileViTv3(nn.Layer):
cfg=mobilevit_config["layer5"],
dilate=dilate_l5)
in_channels = out_channels
exp_channels = min(mobilevit_config["last_layer_exp_factor"] *
in_channels, 960)
if self.mobilevit_v2_based:
self.conv_1x1_exp = nn.Identity()
else:
in_channels = out_channels
out_channels = min(mobilevit_config["last_layer_exp_factor"] *
in_channels, 960)
self.conv_1x1_exp = nn.Sequential(
('conv', nn.Conv2D(
in_channels, exp_channels, 1, bias_attr=False)),
('norm', nn.BatchNorm2D(exp_channels)), ('act', nn.Silu()))
in_channels, out_channels, 1, bias_attr=False)),
('norm', nn.BatchNorm2D(out_channels)), ('act', nn.Silu()))
self.classifier = nn.Sequential()
self.classifier.add_sublayer(
......@@ -675,7 +680,7 @@ class MobileViTv3(nn.Layer):
self.classifier.add_sublayer(
name="dropout", sublayer=nn.Dropout(p=classifier_dropout))
self.classifier.add_sublayer(
name="fc", sublayer=nn.Linear(exp_channels, class_num))
name="fc", sublayer=nn.Linear(out_channels, class_num))
# weight initialization
self.apply(self._init_weights)
......@@ -1022,6 +1027,216 @@ def MobileViTv3_XXS(pretrained=False, use_ssld=False, **kwargs):
return model
def MobileViTv3_S_L2(pretrained=False, use_ssld=False, **kwargs):
mv2_exp_mult = 4
mobilevit_config = {
"layer0": {
"img_channels": 3,
"out_channels": 16,
},
"layer1": {
"out_channels": 32,
"expand_ratio": mv2_exp_mult,
"num_blocks": 1,
"stride": 1,
"block_type": "mv2"
},
"layer2": {
"out_channels": 64,
"expand_ratio": mv2_exp_mult,
"num_blocks": 3,
"stride": 2,
"block_type": "mv2"
},
"layer3": { # 28x28
"out_channels": 128,
"transformer_channels": 144,
"ffn_dim": 288,
"transformer_blocks": 2,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"layer4": { # 14x14
"out_channels": 256,
"transformer_channels": 192,
"ffn_dim": 384,
"transformer_blocks": 2,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"layer5": { # 7x7
"out_channels": 320,
"transformer_channels": 240,
"ffn_dim": 480,
"transformer_blocks": 3,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"last_layer_exp_factor": 4
}
model = MobileViTv3(mobilevit_config, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["MobileViTv3_S_L2"], use_ssld=use_ssld)
return model
def MobileViTv3_XS_L2(pretrained=False, use_ssld=False, **kwargs):
mv2_exp_mult = 4
mobilevit_config = {
"layer0": {
"img_channels": 3,
"out_channels": 16,
},
"layer1": {
"out_channels": 32,
"expand_ratio": mv2_exp_mult,
"num_blocks": 1,
"stride": 1,
"block_type": "mv2"
},
"layer2": {
"out_channels": 48,
"expand_ratio": mv2_exp_mult,
"num_blocks": 3,
"stride": 2,
"block_type": "mv2"
},
"layer3": { # 28x28
"out_channels": 96,
"transformer_channels": 96,
"ffn_dim": 192,
"transformer_blocks": 2,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"layer4": { # 14x14
"out_channels": 160,
"transformer_channels": 120,
"ffn_dim": 240,
"transformer_blocks": 2,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"layer5": { # 7x7
"out_channels": 160,
"transformer_channels": 144,
"ffn_dim": 288,
"transformer_blocks": 3,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"last_layer_exp_factor": 4
}
model = MobileViTv3(mobilevit_config, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["MobileViTv3_XS_L2"], use_ssld=use_ssld)
return model
def MobileViTv3_XXS_L2(pretrained=False, use_ssld=False, **kwargs):
mv2_exp_mult = 2
mobilevit_config = {
"layer0": {
"img_channels": 3,
"out_channels": 16,
},
"layer1": {
"out_channels": 16,
"expand_ratio": mv2_exp_mult,
"num_blocks": 1,
"stride": 1,
"block_type": "mv2"
},
"layer2": {
"out_channels": 24,
"expand_ratio": mv2_exp_mult,
"num_blocks": 3,
"stride": 2,
"block_type": "mv2"
},
"layer3": { # 28x28
"out_channels": 64,
"transformer_channels": 64,
"ffn_dim": 128,
"transformer_blocks": 2,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"layer4": { # 14x14
"out_channels": 80,
"transformer_channels": 80,
"ffn_dim": 160,
"transformer_blocks": 2,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"layer5": { # 7x7
"out_channels": 128,
"transformer_channels": 96,
"ffn_dim": 192,
"transformer_blocks": 3,
"patch_h": 2,
"patch_w": 2,
"stride": 2,
"mv_expand_ratio": mv2_exp_mult,
"head_dim": None,
"num_heads": 4,
"block_type": "mobilevit"
},
"last_layer_exp_factor": 4
}
model = MobileViTv3(mobilevit_config, **kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["MobileViTv3_XXS_L2"], use_ssld=use_ssld)
return model
def MobileViTv3_x1_0(pretrained=False, use_ssld=False, **kwargs):
mobilevit_config = {
"layer0": {
......
......@@ -99,7 +99,7 @@ DataLoader:
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: False
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 288
......
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 300
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 256, 256]
save_inference_dir: ./inference
use_dali: False
# mixed precision training
AMP:
scale_loss: 65536
use_dynamic_loss_scaling: True
# O1: mixed fp16
level: O1
# model ema
EMA:
decay: 0.9995
# model architecture
Arch:
name: MobileViTv3_S_L2
class_num: 1000
dropout: 0.1
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.01
lr:
# for 8 cards
name: Cosine
learning_rate: 0.002
eta_min: 0.0002
warmup_epoch: 1 # 3000 iterations
warmup_start_lr: 0.0002
# by_epoch: True
# data loader for train and eval
DataLoader:
Train:
dataset:
name: MultiScaleDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 256
interpolation: bilinear
use_log_aspect: True
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
# support to specify width and height respectively:
# scales: [(256,256) (160,160), (192,192), (224,224) (288,288) (320,320)]
sampler:
name: MultiScaleSampler
scales: [256, 160, 192, 224, 288, 320]
# first_bs: batch size for the first image resolution in the scales list
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
first_bs: 48
divided_factor: 32
is_training: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 288
interpolation: bilinear
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 48
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 288
interpolation: bilinear
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
......@@ -99,7 +99,7 @@ DataLoader:
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: False
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 288
......
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 300
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 256, 256]
save_inference_dir: ./inference
use_dali: False
# mixed precision training
AMP:
scale_loss: 65536
use_dynamic_loss_scaling: True
# O1: mixed fp16
level: O1
# model ema
EMA:
decay: 0.9995
# model architecture
Arch:
name: MobileViTv3_XS_L2
class_num: 1000
dropout: 0.1
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.01
lr:
# for 8 cards
name: Cosine
learning_rate: 0.002
eta_min: 0.0002
warmup_epoch: 1 # 3000 iterations
warmup_start_lr: 0.0002
# by_epoch: True
# data loader for train and eval
DataLoader:
Train:
dataset:
name: MultiScaleDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 256
interpolation: bilinear
use_log_aspect: True
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
# support to specify width and height respectively:
# scales: [(256,256) (160,160), (192,192), (224,224) (288,288) (320,320)]
sampler:
name: MultiScaleSampler
scales: [256, 160, 192, 224, 288, 320]
# first_bs: batch size for the first image resolution in the scales list
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
first_bs: 48
divided_factor: 32
is_training: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 288
interpolation: bilinear
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 48
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 288
interpolation: bilinear
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
......@@ -99,7 +99,7 @@ DataLoader:
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: False
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 288
......
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 300
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 256, 256]
save_inference_dir: ./inference
use_dali: False
# mixed precision training
AMP:
scale_loss: 65536
use_dynamic_loss_scaling: True
# O1: mixed fp16
level: O1
# model ema
EMA:
decay: 0.9995
# model architecture
Arch:
name: MobileViTv3_XXS_L2
class_num: 1000
dropout: 0.1
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.01
lr:
# for 8 cards
name: Cosine
learning_rate: 0.002
eta_min: 0.0002
warmup_epoch: 1 # 3000 iterations
warmup_start_lr: 0.0002
# by_epoch: True
# data loader for train and eval
DataLoader:
Train:
dataset:
name: MultiScaleDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 256
interpolation: bilinear
use_log_aspect: True
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
# support to specify width and height respectively:
# scales: [(256,256) (160,160), (192,192), (224,224) (288,288) (320,320)]
sampler:
name: MultiScaleSampler
scales: [256, 160, 192, 224, 288, 320]
# first_bs: batch size for the first image resolution in the scales list
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
first_bs: 48
divided_factor: 32
is_training: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 288
interpolation: bilinear
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 48
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 288
interpolation: bilinear
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
......@@ -47,48 +47,68 @@ Optimizer:
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.01
weight_decay: 0.05
no_weight_decay_name: .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 0.002
eta_min: 0.0002
warmup_epoch: 1 # 3000 iterations
warmup_start_lr: 0.0002
warmup_epoch: 20 # 20000 iterations
warmup_start_lr: 1e-6
# by_epoch: True
clip_norm: 10
# data loader for train and eval
DataLoader:
Train:
dataset:
name: MultiScaleDataset
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- RandCropImage:
size: 256
interpolation: bilinear
interpolation: bicubic
backend: pil
use_log_aspect: True
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
img_size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
# support to specify width and height respectively:
# scales: [(256,256) (160,160), (192,192), (224,224) (288,288) (320,320)]
- RandomErasing:
EPSILON: 0.25
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
batch_transform_ops:
- OpSampler:
MixupOperator:
alpha: 0.2
prob: 0.5
CutmixOperator:
alpha: 1.0
prob: 0.5
sampler:
name: MultiScaleSampler
scales: [256, 160, 192, 224, 288, 320]
# first_bs: batch size for the first image resolution in the scales list
# divide_factor: to ensure the width and height dimensions can be devided by downsampling multiple
first_bs: 48
divided_factor: 32
is_training: True
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
......@@ -99,11 +119,13 @@ DataLoader:
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: False
to_np: False
channel_first: False
backend: pil
- ResizeImage:
resize_short: 288
interpolation: bilinear
interpolation: bicubic
backend: pil
- CropImage:
size: 256
- NormalizeImage:
......@@ -113,7 +135,7 @@ DataLoader:
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 48
batch_size: 128
drop_last: False
shuffle: False
loader:
......@@ -125,11 +147,13 @@ Infer:
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
to_np: False
channel_first: False
backend: pil
- ResizeImage:
resize_short: 288
interpolation: bilinear
interpolation: bicubic
backend: pil
- CropImage:
size: 256
- NormalizeImage:
......
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 300
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 256, 256]
save_inference_dir: ./inference
use_dali: False
# mixed precision training
AMP:
scale_loss: 65536
use_dynamic_loss_scaling: True
# O1: mixed fp16
level: O1
# model ema
EMA:
decay: 0.9995
# model architecture
Arch:
name: MobileViTv3_x0_75
class_num: 1000
classifier_dropout: 0.
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.05
no_weight_decay_name: .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 0.002
eta_min: 0.0002
warmup_epoch: 20 # 20000 iterations
warmup_start_lr: 1e-6
# by_epoch: True
clip_norm: 10
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- RandCropImage:
size: 256
interpolation: bicubic
backend: pil
use_log_aspect: True
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
img_size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
- RandomErasing:
EPSILON: 0.25
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
batch_transform_ops:
- OpSampler:
MixupOperator:
alpha: 0.2
prob: 0.5
CutmixOperator:
alpha: 1.0
prob: 0.5
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_np: False
channel_first: False
backend: pil
- ResizeImage:
resize_short: 288
interpolation: bicubic
backend: pil
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_np: False
channel_first: False
backend: pil
- ResizeImage:
resize_short: 288
interpolation: bicubic
backend: pil
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 300
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 256, 256]
save_inference_dir: ./inference
use_dali: False
# mixed precision training
AMP:
scale_loss: 65536
use_dynamic_loss_scaling: True
# O1: mixed fp16
level: O1
# model ema
EMA:
decay: 0.9995
# model architecture
Arch:
name: MobileViTv3_x1_0
class_num: 1000
classifier_dropout: 0.
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.05
no_weight_decay_name: .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 0.002
eta_min: 0.0002
warmup_epoch: 20 # 20000 iterations
warmup_start_lr: 1e-6
# by_epoch: True
clip_norm: 10
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- RandCropImage:
size: 256
interpolation: bicubic
backend: pil
use_log_aspect: True
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
img_size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
- RandomErasing:
EPSILON: 0.25
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
batch_transform_ops:
- OpSampler:
MixupOperator:
alpha: 0.2
prob: 0.5
CutmixOperator:
alpha: 1.0
prob: 0.5
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_np: False
channel_first: False
backend: pil
- ResizeImage:
resize_short: 288
interpolation: bicubic
backend: pil
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_np: False
channel_first: False
backend: pil
- ResizeImage:
resize_short: 288
interpolation: bicubic
backend: pil
- CropImage:
size: 256
- NormalizeImage:
scale: 1.0/255.0
mean: [0.0, 0.0, 0.0]
std: [1.0, 1.0, 1.0]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 5]
Eval:
- TopkAcc:
topk: [1, 5]
===========================train_params===========================
model_name:MobileViTv3_S
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.first_bs:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_S.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
inference_dir:null
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=288 -o PreProcess.transform_ops.1.CropImage.size=256 -o PreProcess.transform_ops.2.NormalizeImage.mean=[0.,0.,0.] -o PreProcess.transform_ops.2.NormalizeImage.std=[1.,1.,1.]
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================train_benchmark_params==========================
batch_size:128
fp_items:fp32
epoch:1
model_type:norm_train
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,256,256]}]
===========================train_params===========================
model_name:MobileViTv3_x1_0
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x1_0.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1 -o Global.eval_during_train=False -o Global.save_interval=2
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x1_0.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/MobileViTv3/MobileViTv3_x1_0.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
inference_dir:null
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.resize_short=288 -o PreProcess.transform_ops.1.CropImage.size=256 -o PreProcess.transform_ops.2.NormalizeImage.mean=[0.,0.,0.] -o PreProcess.transform_ops.2.NormalizeImage.std=[1.,1.,1.]
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================train_benchmark_params==========================
batch_size:128
fp_items:fp32
epoch:1
model_type:norm_train
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,256,256]}]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册