googlenet.py 6.4 KB
Newer Older
W
WuHaobo 已提交
1
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
2 3 4
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
5 6
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
littletomatodonkey 已提交
7 8
from paddle.nn.initializer import Uniform

9 10
import math

littletomatodonkey's avatar
littletomatodonkey 已提交
11 12
__all__ = ['GoogLeNet']

13 14 15 16

def xavier(channels, filter_size, name):
    stdv = (3.0 / (filter_size**2 * channels))**0.5
    param_attr = ParamAttr(
littletomatodonkey's avatar
littletomatodonkey 已提交
17
        initializer=Uniform(-stdv, stdv), name=name + "_weights")
18 19 20
    return param_attr


littletomatodonkey's avatar
littletomatodonkey 已提交
21
class ConvLayer(nn.Layer):
22 23 24 25 26 27 28 29 30 31
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None,
                 name=None):
        super(ConvLayer, self).__init__()

32
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
33 34 35
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
W
WuHaobo 已提交
36 37 38
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
39
            weight_attr=ParamAttr(name=name + "_weights"),
40 41 42 43 44 45 46
            bias_attr=False)

    def forward(self, inputs):
        y = self._conv(inputs)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
47
class Inception(nn.Layer):
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter1,
                 filter3R,
                 filter3,
                 filter5R,
                 filter5,
                 proj,
                 name=None):
        super(Inception, self).__init__()

        self._conv1 = ConvLayer(
            input_channels, filter1, 1, name="inception_" + name + "_1x1")
        self._conv3r = ConvLayer(
            input_channels,
            filter3R,
            1,
W
WuHaobo 已提交
66
            name="inception_" + name + "_3x3_reduce")
67 68 69 70 71 72
        self._conv3 = ConvLayer(
            filter3R, filter3, 3, name="inception_" + name + "_3x3")
        self._conv5r = ConvLayer(
            input_channels,
            filter5R,
            1,
W
WuHaobo 已提交
73
            name="inception_" + name + "_5x5_reduce")
74 75
        self._conv5 = ConvLayer(
            filter5R, filter5, 5, name="inception_" + name + "_5x5")
76
        self._pool = MaxPool2D(kernel_size=3, stride=1, padding=1)
littletomatodonkey's avatar
littletomatodonkey 已提交
77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        self._convprj = ConvLayer(
            input_channels, proj, 1, name="inception_" + name + "_3x3_proj")

    def forward(self, inputs):
        conv1 = self._conv1(inputs)

        conv3r = self._conv3r(inputs)
        conv3 = self._conv3(conv3r)

        conv5r = self._conv5r(inputs)
        conv5 = self._conv5(conv5r)

        pool = self._pool(inputs)
        convprj = self._convprj(pool)

littletomatodonkey's avatar
littletomatodonkey 已提交
93 94
        cat = paddle.concat([conv1, conv3, conv5, convprj], axis=1)
        cat = F.relu(cat)
littletomatodonkey's avatar
littletomatodonkey 已提交
95
        return cat
96 97


T
Tingquan Gao 已提交
98
class GoogLeNetDY(nn.Layer):
99
    def __init__(self, class_dim=1000):
T
Tingquan Gao 已提交
100
        super(GoogLeNetDY, self).__init__()
101
        self._conv = ConvLayer(3, 64, 7, 2, name="conv1")
102
        self._pool = MaxPool2D(kernel_size=3, stride=2)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        self._conv_1 = ConvLayer(64, 64, 1, name="conv2_1x1")
        self._conv_2 = ConvLayer(64, 192, 3, name="conv2_3x3")

        self._ince3a = Inception(
            192, 192, 64, 96, 128, 16, 32, 32, name="ince3a")
        self._ince3b = Inception(
            256, 256, 128, 128, 192, 32, 96, 64, name="ince3b")

        self._ince4a = Inception(
            480, 480, 192, 96, 208, 16, 48, 64, name="ince4a")
        self._ince4b = Inception(
            512, 512, 160, 112, 224, 24, 64, 64, name="ince4b")
        self._ince4c = Inception(
            512, 512, 128, 128, 256, 24, 64, 64, name="ince4c")
        self._ince4d = Inception(
            512, 512, 112, 144, 288, 32, 64, 64, name="ince4d")
        self._ince4e = Inception(
            528, 528, 256, 160, 320, 32, 128, 128, name="ince4e")

        self._ince5a = Inception(
            832, 832, 256, 160, 320, 32, 128, 128, name="ince5a")
        self._ince5b = Inception(
            832, 832, 384, 192, 384, 48, 128, 128, name="ince5b")

127
        self._pool_5 = AvgPool2D(kernel_size=7, stride=7)
128

littletomatodonkey's avatar
littletomatodonkey 已提交
129
        self._drop = Dropout(p=0.4, mode="downscale_in_infer")
130 131 132
        self._fc_out = Linear(
            1024,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
133 134
            weight_attr=xavier(1024, 1, "out"),
            bias_attr=ParamAttr(name="out_offset"))
135
        self._pool_o1 = AvgPool2D(kernel_size=5, stride=3)
136 137 138 139
        self._conv_o1 = ConvLayer(512, 128, 1, name="conv_o1")
        self._fc_o1 = Linear(
            1152,
            1024,
littletomatodonkey's avatar
littletomatodonkey 已提交
140 141
            weight_attr=xavier(2048, 1, "fc_o1"),
            bias_attr=ParamAttr(name="fc_o1_offset"))
littletomatodonkey's avatar
littletomatodonkey 已提交
142
        self._drop_o1 = Dropout(p=0.7, mode="downscale_in_infer")
143 144 145
        self._out1 = Linear(
            1024,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
146 147
            weight_attr=xavier(1024, 1, "out1"),
            bias_attr=ParamAttr(name="out1_offset"))
148
        self._pool_o2 = AvgPool2D(kernel_size=5, stride=3)
149 150 151 152
        self._conv_o2 = ConvLayer(528, 128, 1, name="conv_o2")
        self._fc_o2 = Linear(
            1152,
            1024,
littletomatodonkey's avatar
littletomatodonkey 已提交
153
            weight_attr=xavier(2048, 1, "fc_o2"),
154
            bias_attr=ParamAttr(name="fc_o2_offset"))
littletomatodonkey's avatar
littletomatodonkey 已提交
155
        self._drop_o2 = Dropout(p=0.7, mode="downscale_in_infer")
156 157 158
        self._out2 = Linear(
            1024,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
159
            weight_attr=xavier(1024, 1, "out2"),
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
            bias_attr=ParamAttr(name="out2_offset"))

    def forward(self, inputs):
        x = self._conv(inputs)
        x = self._pool(x)
        x = self._conv_1(x)
        x = self._conv_2(x)
        x = self._pool(x)

        x = self._ince3a(x)
        x = self._ince3b(x)
        x = self._pool(x)

        ince4a = self._ince4a(x)
        x = self._ince4b(ince4a)
        x = self._ince4c(x)
        ince4d = self._ince4d(x)
        x = self._ince4e(ince4d)
        x = self._pool(x)

        x = self._ince5a(x)
        ince5b = self._ince5b(x)

        x = self._pool_5(ince5b)
        x = self._drop(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
185
        x = paddle.squeeze(x, axis=[2, 3])
186 187 188 189
        out = self._fc_out(x)

        x = self._pool_o1(ince4a)
        x = self._conv_o1(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
190
        x = paddle.flatten(x, start_axis=1, stop_axis=-1)
191
        x = self._fc_o1(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
192
        x = F.relu(x)
193 194 195 196 197
        x = self._drop_o1(x)
        out1 = self._out1(x)

        x = self._pool_o2(ince4d)
        x = self._conv_o2(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
198
        x = paddle.flatten(x, start_axis=1, stop_axis=-1)
199 200 201
        x = self._fc_o2(x)
        x = self._drop_o2(x)
        out2 = self._out2(x)
W
WuHaobo 已提交
202
        return [out, out1, out2]
203 204


W
wqz960 已提交
205
def GoogLeNet(**args):
T
Tingquan Gao 已提交
206
    model = GoogLeNetDY(**args)
littletomatodonkey's avatar
littletomatodonkey 已提交
207
    return model