retrieval.py 14.8 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
D
dongshuilong 已提交
17

18
from collections import defaultdict
H
HydrogenSulfate 已提交
19 20

import numpy as np
D
dongshuilong 已提交
21
import paddle
22
import scipy
23

G
gaotingquan 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
from ...utils.misc import AverageMeter
from ...utils import all_gather, logger
from ...data import build_dataloader
from ...loss import build_loss
from ...metric import build_metrics


class RetrievalEval(object):
    def __init__(self, config, mode, model):
        self.config = config
        self.model = model
        self.print_batch_step = self.config["Global"]["print_batch_step"]
        self.use_dali = self.config["Global"].get("use_dali", False)
        self.eval_metric_func = build_metrics(self.config, "Eval")
        self.eval_loss_func = build_loss(self.config, "Eval")
        self.output_info = dict()

        self.gallery_query_dataloader = None
        if len(self.config["DataLoader"]["Eval"].keys()) == 1:
            self.gallery_query_dataloader = build_dataloader(self.config,
                                                             "Eval")
        else:
            self.gallery_dataloader = build_dataloader(self.config, "Eval",
                                                       "Gallery")
            self.query_dataloader = build_dataloader(self.config, "Eval",
                                                     "Query")

    def __call__(self, epoch_id=0):
        self.model.eval()

        # step1. prepare query and gallery features
        if self.gallery_query_dataloader is not None:
            gallery_feat, gallery_label, gallery_camera = self.compute_feature(
                "gallery_query")
            query_feat, query_label, query_camera = gallery_feat, gallery_label, gallery_camera
        else:
            gallery_feat, gallery_label, gallery_camera = self.compute_feature(
                "gallery")
            query_feat, query_label, query_camera = self.compute_feature(
                "query")

        # step2. split features into feature blocks for saving memory
        num_query = len(query_feat)
        block_size = self.config["Global"].get("sim_block_size", 64)
        sections = [block_size] * (num_query // block_size)
        if num_query % block_size > 0:
            sections.append(num_query % block_size)

        query_feat_blocks = paddle.split(query_feat, sections)
        query_label_blocks = paddle.split(query_label, sections)
        query_camera_blocks = paddle.split(
            query_camera, sections) if query_camera is not None else None
        metric_key = None

        # step3. compute metric
        if self.eval_loss_func is None:
            metric_dict = {metric_key: 0.0}
H
HydrogenSulfate 已提交
81
        else:
G
gaotingquan 已提交
82 83 84
            use_reranking = self.config["Global"].get("re_ranking", False)
            logger.info(f"re_ranking={use_reranking}")
            if use_reranking:
85
                # compute distance matrix
G
gaotingquan 已提交
86 87 88
                distmat = compute_re_ranking_dist(
                    query_feat, gallery_feat, self.config["Global"].get(
                        "feature_normalize", True), 20, 6, 0.3)
89 90
                # exclude illegal distance
                if query_camera is not None:
G
gaotingquan 已提交
91 92
                    camera_mask = query_camera != gallery_camera.t()
                    label_mask = query_label != gallery_label.t()
93
                    keep_mask = label_mask | camera_mask
G
gaotingquan 已提交
94 95 96
                    distmat = keep_mask.astype(query_feat.dtype) * distmat + (
                        ~keep_mask).astype(query_feat.dtype) * (distmat.max() +
                                                                1)
D
dongshuilong 已提交
97
                else:
H
HydrogenSulfate 已提交
98
                    keep_mask = None
G
gaotingquan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
                # compute metric with all samples
                metric_dict = self.eval_metric_func(-distmat, query_label,
                                                    gallery_label, keep_mask)
            else:
                metric_dict = defaultdict(float)
                for block_idx, block_feat in enumerate(query_feat_blocks):
                    # compute distance matrix
                    distmat = paddle.matmul(
                        block_feat, gallery_feat, transpose_y=True)
                    # exclude illegal distance
                    if query_camera is not None:
                        camera_mask = query_camera_blocks[
                            block_idx] != gallery_camera.t()
                        label_mask = query_label_blocks[
                            block_idx] != gallery_label.t()
                        keep_mask = label_mask | camera_mask
                        distmat = keep_mask.astype(query_feat.dtype) * distmat
                    else:
                        keep_mask = None
                    # compute metric by block
                    metric_block = self.eval_metric_func(
                        distmat, query_label_blocks[block_idx], gallery_label,
                        keep_mask)
                    # accumulate metric
                    for key in metric_block:
                        metric_dict[key] += metric_block[
                            key] * block_feat.shape[0] / num_query

        metric_info_list = []
        for key, value in metric_dict.items():
            metric_info_list.append(f"{key}: {value:.5f}")
            if metric_key is None:
                metric_key = key
        metric_msg = ", ".join(metric_info_list)
        logger.info(f"[Eval][Epoch {epoch_id}][Avg]{metric_msg}")

        return metric_dict[metric_key]

    def compute_feature(self, name="gallery"):
        if name == "gallery":
            dataloader = self.gallery_dataloader
        elif name == "query":
            dataloader = self.query_dataloader
        elif name == "gallery_query":
            dataloader = self.gallery_query_dataloader
        else:
            raise ValueError(
                f"Only support gallery or query or gallery_query dataset, but got {name}"
D
dongshuilong 已提交
147
            )
148

G
gaotingquan 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        all_feat = []
        all_label = []
        all_camera = []
        has_camera = False
        for idx, batch in enumerate(dataloader):  # load is very time-consuming
            if idx % self.print_batch_step == 0:
                logger.info(
                    f"{name} feature calculation process: [{idx}/{len(dataloader)}]"
                )

            batch = [paddle.to_tensor(x) for x in batch]
            batch[1] = batch[1].reshape([-1, 1]).astype("int64")
            if len(batch) >= 3:
                has_camera = True
                batch[2] = batch[2].reshape([-1, 1]).astype("int64")

T
Tingquan Gao 已提交
165
            out = self.model(batch)
G
gaotingquan 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

            if "Student" in out:
                out = out["Student"]

            # get features
            if self.config["Global"].get("retrieval_feature_from",
                                         "features") == "features":
                # use output from neck as feature
                batch_feat = out["features"]
            else:
                # use output from backbone as feature
                batch_feat = out["backbone"]

            # do norm(optional)
            if self.config["Global"].get("feature_normalize", True):
                batch_feat = paddle.nn.functional.normalize(batch_feat, p=2)

            # do binarize(optional)
            if self.config["Global"].get("feature_binarize") == "round":
                batch_feat = paddle.round(batch_feat).astype(
                    "float32") * 2.0 - 1.0
            elif self.config["Global"].get("feature_binarize") == "sign":
                batch_feat = paddle.sign(batch_feat).astype("float32")

            if paddle.distributed.get_world_size() > 1:
                all_feat.append(all_gather(batch_feat))
                all_label.append(all_gather(batch[1]))
                if has_camera:
                    all_camera.append(all_gather(batch[2]))
            else:
                all_feat.append(batch_feat)
                all_label.append(batch[1])
                if has_camera:
                    all_camera.append(batch[2])

        if self.use_dali:
            dataloader.reset()

        all_feat = paddle.concat(all_feat)
        all_label = paddle.concat(all_label)
        if has_camera:
            all_camera = paddle.concat(all_camera)
D
dongshuilong 已提交
208
        else:
G
gaotingquan 已提交
209 210 211 212 213 214 215 216 217 218 219
            all_camera = None
        # discard redundant padding sample(s) at the end
        total_samples = dataloader.size if self.use_dali else len(
            dataloader.dataset)
        all_feat = all_feat[:total_samples]
        all_label = all_label[:total_samples]
        if has_camera:
            all_camera = all_camera[:total_samples]

        logger.info(f"Build {name} done, all feat shape: {all_feat.shape}")
        return all_feat, all_label, all_camera
H
HydrogenSulfate 已提交
220 221


222 223
def k_reciprocal_neighbor(rank: np.ndarray, p: int, k: int) -> np.ndarray:
    """Implementation of k-reciprocal nearest neighbors, i.e. R(p, k)
H
HydrogenSulfate 已提交
224 225

    Args:
226 227 228
        rank (np.ndarray): Rank mat with shape of [N, N].
        p (int): Probe index.
        k (int): Parameter k for k-reciprocal nearest neighbors algorithm.
H
HydrogenSulfate 已提交
229 230

    Returns:
231
        np.ndarray: K-reciprocal nearest neighbors of probe p with shape of [M, ].
H
HydrogenSulfate 已提交
232
    """
233 234 235 236 237 238 239
    # use k+1 for excluding probe index itself
    forward_k_neigh_index = rank[p, :k + 1]
    backward_k_neigh_index = rank[forward_k_neigh_index, :k + 1]
    candidate = np.where(backward_k_neigh_index == p)[0]
    return forward_k_neigh_index[candidate]


240 241
def compute_re_ranking_dist(query_feat: paddle.Tensor,
                            gallery_feat: paddle.Tensor,
242 243 244 245 246 247 248 249
                            feature_normed: bool=True,
                            k1: int=20,
                            k2: int=6,
                            lamb: float=0.5) -> paddle.Tensor:
    """
    Re-ranking Person Re-identification with k-reciprocal Encoding
    Reference: https://arxiv.org/abs/1701.08398
    Code refernence: https://github.com/michuanhaohao/reid-strong-baseline/blob/master/utils/re_ranking.py
H
HydrogenSulfate 已提交
250

251
    Args:
252 253
        query_feat (paddle.Tensor): Query features with shape of [num_query, feature_dim].
        gallery_feat (paddle.Tensor):  Gallery features with shape of [num_gallery, feature_dim].
254 255 256 257
        feature_normed (bool, optional):  Whether input features are normalized.
        k1 (int, optional): Parameter for K-reciprocal nearest neighbors. Defaults to 20.
        k2 (int, optional): Parameter for K-nearest neighbors. Defaults to 6.
        lamb (float, optional): Penalty factor. Defaults to 0.5.
H
HydrogenSulfate 已提交
258

259 260 261
    Returns:
        paddle.Tensor: (1 - lamb) x Dj + lamb x D, with shape of [num_query, num_gallery].
    """
262 263
    num_query = query_feat.shape[0]
    num_gallery = gallery_feat.shape[0]
264
    num_all = num_query + num_gallery
265
    feat = paddle.concat([query_feat, gallery_feat], 0)
266 267 268 269 270 271 272
    logger.info("Using GPU to compute original distance matrix")
    # use L2 distance
    if feature_normed:
        original_dist = 2 - 2 * paddle.matmul(feat, feat, transpose_y=True)
    else:
        original_dist = paddle.pow(feat, 2).sum(axis=1, keepdim=True).expand([num_all, num_all]) + \
            paddle.pow(feat, 2).sum(axis=1, keepdim=True).expand([num_all, num_all]).t()
273
        original_dist = original_dist.addmm(feat, feat.t(), -2.0, 1.0)
274 275
    original_dist = original_dist.numpy()
    del feat
H
HydrogenSulfate 已提交
276 277 278

    original_dist = np.transpose(original_dist / np.max(original_dist, axis=0))
    V = np.zeros_like(original_dist).astype(np.float16)
悟、's avatar
悟、 已提交
279
    initial_rank = np.argpartition(original_dist, range(1, k1 + 1))
280 281 282 283 284 285 286 287 288 289 290 291
    logger.info("Start re-ranking...")

    for p in range(num_all):
        # compute R(p,k1)
        p_k_reciprocal_ind = k_reciprocal_neighbor(initial_rank, p, k1)

        # compute R*(p,k1)=R(p,k1)∪R(q,k1/2)
        # s.t. |R(p,k1)∩R(q,k1/2)|>=2/3|R(q,k1/2)|, ∀q∈R(p,k1)
        p_k_reciprocal_exp_ind = p_k_reciprocal_ind
        for _, q in enumerate(p_k_reciprocal_ind):
            q_k_reciprocal_ind = k_reciprocal_neighbor(initial_rank, q,
                                                       int(np.around(k1 / 2)))
292 293 294 295 296
            if len(
                    np.intersect1d(
                        p_k_reciprocal_ind,
                        q_k_reciprocal_ind,
                        assume_unique=True)) > 2 / 3 * len(q_k_reciprocal_ind):
297 298 299 300 301 302 303 304 305 306
                p_k_reciprocal_exp_ind = np.append(p_k_reciprocal_exp_ind,
                                                   q_k_reciprocal_ind)
        p_k_reciprocal_exp_ind = np.unique(p_k_reciprocal_exp_ind)
        # reweight distance using gaussian kernel
        weight = np.exp(-original_dist[p, p_k_reciprocal_exp_ind])
        V[p, p_k_reciprocal_exp_ind] = weight / np.sum(weight)

    # local query expansion
    original_dist = original_dist[:num_query, ]
    if k2 > 1:
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        try:
            # use sparse tensor to speed up query expansion
            indices = (np.repeat(np.arange(num_all), k2),
                       initial_rank[:, :k2].reshape([-1, ]))
            values = np.array(
                [1 / k2 for _ in range(num_all * k2)], dtype="float16")
            V = scipy.sparse.coo_matrix(
                (values, indices), V.shape,
                dtype="float16") @V.astype("float16")
        except Exception as e:
            logger.info(
                f"Failed to do local query expansion with sparse tensor for reason: \n{e}\n"
                f"now use for-loop instead")
            # use vanilla for-loop
            V_qe = np.zeros_like(V, dtype=np.float16)
            for i in range(num_all):
                V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0)
            V = V_qe
            del V_qe
H
HydrogenSulfate 已提交
326
    del initial_rank
327 328

    # cache k-reciprocal sets which contains gj
H
HydrogenSulfate 已提交
329
    invIndex = []
330 331
    for gj in range(num_all):
        invIndex.append(np.nonzero(V[:, gj])[0])
H
HydrogenSulfate 已提交
332

333
    # compute jaccard distance
H
HydrogenSulfate 已提交
334
    jaccard_dist = np.zeros_like(original_dist, dtype=np.float16)
335 336 337 338 339 340 341 342 343
    for p in range(num_query):
        sum_min = np.zeros(shape=[1, num_all], dtype=np.float16)
        gj_ind = np.nonzero(V[p, :])[0]
        gj_ind_inv = [invIndex[gj] for gj in gj_ind]
        for j, gj in enumerate(gj_ind):
            gi = gj_ind_inv[j]
            sum_min[0, gi] += np.minimum(V[p, gj], V[gi, gj])
        jaccard_dist[p] = 1 - sum_min / (2 - sum_min)

344 345
    # fuse jaccard distance with original distance
    final_dist = (1 - lamb) * jaccard_dist + lamb * original_dist
H
HydrogenSulfate 已提交
346 347 348
    del original_dist
    del V
    del jaccard_dist
349
    final_dist = final_dist[:num_query, num_query:]
H
HydrogenSulfate 已提交
350 351
    final_dist = paddle.to_tensor(final_dist)
    return final_dist