export_model.py 2.6 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
littletomatodonkey's avatar
littletomatodonkey 已提交
16 17 18 19 20
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
W
WuHaobo 已提交
21 22

from ppcls.modeling import architectures
23 24 25 26
from ppcls.utils.save_load import load_dygraph_pretrain
import paddle
import paddle.nn.functional as F
from paddle.jit import to_static
W
WuHaobo 已提交
27 28 29


def parse_args():
30 31 32
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

W
WuHaobo 已提交
33 34 35
    parser = argparse.ArgumentParser()
    parser.add_argument("-m", "--model", type=str)
    parser.add_argument("-p", "--pretrained_model", type=str)
L
littletomatodonkey 已提交
36
    parser.add_argument("-o", "--output_path", type=str, default="./inference")
37
    parser.add_argument("--class_dim", type=int, default=1000)
L
littletomatodonkey 已提交
38
    parser.add_argument("--load_static_weights", type=str2bool, default=False)
39
    parser.add_argument("--img_size", type=int, default=224)
W
WuHaobo 已提交
40 41 42 43

    return parser.parse_args()


44
class Net(paddle.nn.Layer):
45
    def __init__(self, net, class_dim, model):
46 47
        super(Net, self).__init__()
        self.pre_net = net(class_dim=class_dim)
48
        self.model = model
W
WuHaobo 已提交
49

50 51 52 53 54 55
    def eval(self):
        self.training = False
        for layer in self.sublayers():
            layer.training = False
            layer.eval()

56 57
    def forward(self, inputs):
        x = self.pre_net(inputs)
58 59
        if self.model == "GoogLeNet":
            x = x[0]
60 61
        x = F.softmax(x)
        return x
W
WuHaobo 已提交
62 63 64 65 66


def main():
    args = parse_args()

67
    net = architectures.__dict__[args.model]
68
    model = Net(net, args.class_dim, args.model)
69
    load_dygraph_pretrain(
70 71 72
        model.pre_net,
        path=args.pretrained_model,
        load_static_weights=args.load_static_weights)
L
littletomatodonkey 已提交
73
    model.eval()
74 75 76 77 78 79 80

    model = to_static(
        model,
        input_spec=[
            paddle.static.InputSpec(
                shape=[None, 3, args.img_size, args.img_size], dtype='float32')
        ])
L
littletomatodonkey 已提交
81
    paddle.jit.save(model, os.path.join(args.output_path, "inference"))
W
WuHaobo 已提交
82 83 84 85


if __name__ == "__main__":
    main()