export_model.py 2.2 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse

from ppcls.modeling import architectures
18 19 20 21
from ppcls.utils.save_load import load_dygraph_pretrain
import paddle
import paddle.nn.functional as F
from paddle.jit import to_static
W
WuHaobo 已提交
22 23 24


def parse_args():
25 26 27
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

W
WuHaobo 已提交
28 29 30 31
    parser = argparse.ArgumentParser()
    parser.add_argument("-m", "--model", type=str)
    parser.add_argument("-p", "--pretrained_model", type=str)
    parser.add_argument("-o", "--output_path", type=str)
32
    parser.add_argument("--class_dim", type=int, default=1000)
33
    parser.add_argument("--load_static_weights", type=str2bool, default=True)
34
    # parser.add_argument("--img_size", type=int, default=224)
W
WuHaobo 已提交
35 36 37 38

    return parser.parse_args()


39 40 41 42 43
class Net(paddle.nn.Layer):
    def __init__(self, net, to_static, class_dim):
        super(Net, self).__init__()
        self.pre_net = net(class_dim=class_dim)
        self.to_static = to_static
W
WuHaobo 已提交
44

45
    # Please modify the 'shape' according to actual needs
46 47 48 49 50 51 52 53
    @to_static(input_spec=[
        paddle.static.InputSpec(
            shape=[None, 3, 224, 224], dtype='float32')
    ])
    def forward(self, inputs):
        x = self.pre_net(inputs)
        x = F.softmax(x)
        return x
W
WuHaobo 已提交
54 55 56 57 58


def main():
    args = parse_args()

59 60
    paddle.disable_static()
    net = architectures.__dict__[args.model]
W
WuHaobo 已提交
61

62
    model = Net(net, to_static, args.class_dim)
63 64

    load_dygraph_pretrain(
65 66 67
        model.pre_net,
        path=args.pretrained_model,
        load_static_weights=args.load_static_weights)
68
    paddle.jit.save(model, args.output_path)
W
WuHaobo 已提交
69 70 71 72


if __name__ == "__main__":
    main()