resnet_vc.py 9.4 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import numpy as np
W
WuHaobo 已提交
20
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22
from paddle import ParamAttr
import paddle.nn as nn
23 24 25
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
littletomatodonkey 已提交
26
from paddle.nn.initializer import Uniform
W
WuHaobo 已提交
27

28
import math
W
WuHaobo 已提交
29

30 31 32
__all__ = [
    "ResNet18_vc", "ResNet34_vc", "ResNet50_vc", "ResNet101_vc", "ResNet152_vc"
]
W
WuHaobo 已提交
33 34


littletomatodonkey's avatar
littletomatodonkey 已提交
35
class ConvBNLayer(nn.Layer):
36 37 38 39 40 41 42 43 44
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()
W
WuHaobo 已提交
45

46
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
47 48 49
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
W
WuHaobo 已提交
50 51 52
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
53
            weight_attr=ParamAttr(name=name + "_weights"),
54
            bias_attr=False)
W
WuHaobo 已提交
55 56 57 58
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
59 60
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
61 62 63 64
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
65
            moving_variance_name=bn_name + '_variance')
W
WuHaobo 已提交
66

67 68 69 70 71 72
    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
73
class BottleneckBlock(nn.Layer):
74 75 76 77 78 79 80
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
        super(BottleneckBlock, self).__init__()
W
WuHaobo 已提交
81

82 83
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
84 85 86 87
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
88 89
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
90 91 92 93 94
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
95 96
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
97 98 99 100 101
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

124 125
        y = paddle.add(x=short, y=conv2)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
126
        return y
127 128


littletomatodonkey's avatar
littletomatodonkey 已提交
129
class BasicBlock(nn.Layer):
130 131 132 133 134 135
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
136
        super(BasicBlock, self).__init__()
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
170 171
        y = paddle.add(x=short, y=conv1)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
172
        return y
173 174


littletomatodonkey's avatar
littletomatodonkey 已提交
175
class ResNet_vc(nn.Layer):
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    def __init__(self, layers=50, class_dim=1000):
        super(ResNet_vc, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]
W
WuHaobo 已提交
196

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        self.conv1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_3")

219
        self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
249
                    basic_block = self.add_sublayer(
250
                        'bb_%d_%d' % (block, i),
littletomatodonkey's avatar
littletomatodonkey 已提交
251
                        BasicBlock(
252 253 254 255 256 257
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
258
                    self.block_list.append(basic_block)
259 260
                    shortcut = True

261
        self.pool2d_avg = AdaptiveAvgPool2D(1)
262 263 264 265 266 267 268 269

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
270 271
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
272 273 274 275 276 277 278 279 280 281
            bias_attr=ParamAttr(name="fc_0.b_0"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
282
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
283 284 285 286 287 288 289 290 291 292 293 294
        y = self.out(y)
        return y


def ResNet18_vc(**args):
    model = ResNet_vc(layers=18, **args)
    return model


def ResNet34_vc(**args):
    model = ResNet_vc(layers=34, **args)
    return model
W
WuHaobo 已提交
295 296


297 298
def ResNet50_vc(**args):
    model = ResNet_vc(layers=50, **args)
W
WuHaobo 已提交
299 300 301
    return model


302 303
def ResNet101_vc(**args):
    model = ResNet_vc(layers=101, **args)
W
WuHaobo 已提交
304 305 306
    return model


307 308
def ResNet152_vc(**args):
    model = ResNet_vc(layers=152, **args)
W
WuHaobo 已提交
309
    return model