resnet.py 9.9 KB
Newer Older
W
WuHaobo 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
W
WuHaobo 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WuHaobo 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14

15 16 17 18 19 20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22
from paddle import ParamAttr
import paddle.nn as nn
23 24 25
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
littletomatodonkey 已提交
26
from paddle.nn.initializer import Uniform
W
WuHaobo 已提交
27 28 29

import math

30
__all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]
W
WuHaobo 已提交
31 32


littletomatodonkey's avatar
littletomatodonkey 已提交
33
class ConvBNLayer(nn.Layer):
W
WuHaobo 已提交
34 35 36 37 38 39
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
40
                 act=None,
H
huangxu96 已提交
41 42
                 name=None,
                 data_format="NCHW"):
W
WuHaobo 已提交
43 44
        super(ConvBNLayer, self).__init__()

45
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
46 47 48
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
W
WuHaobo 已提交
49 50 51
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
52
            weight_attr=ParamAttr(name=name + "_weights"),
H
huangxu96 已提交
53 54
            bias_attr=False,
            data_format=data_format)
55 56 57 58 59 60 61 62 63 64
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(bn_name + "_offset"),
            moving_mean_name=bn_name + "_mean",
H
huangxu96 已提交
65 66
            moving_variance_name=bn_name + "_variance",
            data_layout=data_format)
W
WuHaobo 已提交
67 68 69 70 71 72 73

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
74
class BottleneckBlock(nn.Layer):
75 76 77 78 79
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
H
huangxu96 已提交
80 81
                 name=None,
                 data_format="NCHW"):
W
WuHaobo 已提交
82 83 84 85 86 87
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
88
            act="relu",
H
huangxu96 已提交
89 90
            name=name + "_branch2a",
            data_format=data_format)
W
WuHaobo 已提交
91 92 93 94 95
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
96
            act="relu",
H
huangxu96 已提交
97 98
            name=name + "_branch2b",
            data_format=data_format)
W
WuHaobo 已提交
99 100 101 102
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
103
            act=None,
H
huangxu96 已提交
104 105
            name=name + "_branch2c",
            data_format=data_format)
W
WuHaobo 已提交
106 107 108 109 110 111

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
112
                stride=stride,
H
huangxu96 已提交
113 114
                name=name + "_branch1",
                data_format=data_format)
W
WuHaobo 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

130 131
        y = paddle.add(x=short, y=conv2)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
132
        return y
133 134


littletomatodonkey's avatar
littletomatodonkey 已提交
135
class BasicBlock(nn.Layer):
136 137 138 139 140
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
H
huangxu96 已提交
141 142
                 name=None,
                 data_format="NCHW"):
littletomatodonkey's avatar
littletomatodonkey 已提交
143
        super(BasicBlock, self).__init__()
144 145 146 147 148 149 150
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="relu",
H
huangxu96 已提交
151 152
            name=name + "_branch2a",
            data_format=data_format)
153 154 155 156 157
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
H
huangxu96 已提交
158 159
            name=name + "_branch2b",
            data_format=data_format)
160 161 162 163 164 165 166

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride,
H
huangxu96 已提交
167 168
                name=name + "_branch1",
                data_format=data_format)
169 170 171 172 173 174 175 176 177 178 179

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
180 181
        y = paddle.add(x=short, y=conv1)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
182
        return y
W
WuHaobo 已提交
183

W
WuHaobo 已提交
184

littletomatodonkey's avatar
littletomatodonkey 已提交
185
class ResNet(nn.Layer):
H
huangxu96 已提交
186
    def __init__(self, layers=50, class_dim=1000, input_image_channel=3, data_format="NCHW"):
W
WuHaobo 已提交
187 188 189
        super(ResNet, self).__init__()

        self.layers = layers
H
huangxu96 已提交
190 191 192
        self.data_format = data_format
        self.input_image_channel = input_image_channel

193
        supported_layers = [18, 34, 50, 101, 152]
W
WuHaobo 已提交
194
        assert layers in supported_layers, \
W
WuHaobo 已提交
195 196
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
W
WuHaobo 已提交
197

198 199 200
        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
W
WuHaobo 已提交
201 202 203 204 205
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
206 207
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
W
WuHaobo 已提交
208 209
        num_filters = [64, 128, 256, 512]

W
WuHaobo 已提交
210
        self.conv = ConvBNLayer(
H
huangxu96 已提交
211
            num_channels=self.input_image_channel,
W
WuHaobo 已提交
212 213 214
            num_filters=64,
            filter_size=7,
            stride=2,
215
            act="relu",
H
huangxu96 已提交
216 217 218 219 220 221 222
            name="conv1",
            data_format=self.data_format)
        self.pool2d_max = MaxPool2D(
            kernel_size=3,
            stride=2, 
            padding=1,
            data_format=self.data_format)
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        conv_name,
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
H
huangxu96 已提交
244 245
                            name=conv_name,
                            data_format=self.data_format))
246 247 248 249 250 251 252
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
253
                    basic_block = self.add_sublayer(
254
                        conv_name,
littletomatodonkey's avatar
littletomatodonkey 已提交
255
                        BasicBlock(
256 257 258 259 260
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
H
huangxu96 已提交
261 262
                            name=conv_name,
                            data_format=self.data_format))
littletomatodonkey's avatar
littletomatodonkey 已提交
263
                    self.block_list.append(basic_block)
264
                    shortcut = True
W
WuHaobo 已提交
265

H
huangxu96 已提交
266
        self.pool2d_avg = AdaptiveAvgPool2D(1, data_format=self.data_format)
W
WuHaobo 已提交
267

268
        self.pool2d_avg_channels = num_channels[-1] * 2
W
WuHaobo 已提交
269

270
        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
W
WuHaobo 已提交
271 272

        self.out = Linear(
273
            self.pool2d_avg_channels,
W
WuHaobo 已提交
274
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
275
            weight_attr=ParamAttr(
littletomatodonkey's avatar
littletomatodonkey 已提交
276
                initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
277
            bias_attr=ParamAttr(name="fc_0.b_0"))
W
WuHaobo 已提交
278

W
WuHaobo 已提交
279
    def forward(self, inputs):
H
huangxu96 已提交
280 281 282 283 284 285 286 287 288 289 290 291
        with paddle.static.amp.fp16_guard():
            if self.data_format == "NHWC":
                inputs = paddle.tensor.transpose(inputs, [0, 2, 3, 1])
                inputs.stop_gradient = True
            y = self.conv(inputs)
            y = self.pool2d_max(y)
            for block in self.block_list:
                y = block(y)
            y = self.pool2d_avg(y)
            y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
            y = self.out(y)
            return y
W
WuHaobo 已提交
292

W
WuHaobo 已提交
293

294 295
def ResNet18(**args):
    model = ResNet(layers=18, **args)
W
WuHaobo 已提交
296 297 298
    return model


299 300
def ResNet34(**args):
    model = ResNet(layers=34, **args)
W
WuHaobo 已提交
301 302 303
    return model


304 305
def ResNet50(**args):
    model = ResNet(layers=50, **args)
W
WuHaobo 已提交
306 307 308
    return model


309 310
def ResNet101(**args):
    model = ResNet(layers=101, **args)
W
WuHaobo 已提交
311 312 313
    return model


314 315
def ResNet152(**args):
    model = ResNet(layers=152, **args)
W
WuHaobo 已提交
316
    return model