classification.py 6.6 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import platform
import paddle

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger


def classification_eval(engine, epoch_id=0):
    if hasattr(engine.eval_metric_func, "reset"):
        engine.eval_metric_func.reset()
    output_info = dict()
    time_info = {
        "batch_cost": AverageMeter(
            "batch_cost", '.5f', postfix=" s,"),
        "reader_cost": AverageMeter(
            "reader_cost", ".5f", postfix=" s,"),
    }
    print_batch_step = engine.config["Global"]["print_batch_step"]

    tic = time.time()
    accum_samples = 0
39 40 41 42 43 44
    total_samples = len(
        engine.eval_dataloader.
        dataset) if not engine.use_dali else engine.eval_dataloader.size
    max_iter = len(engine.eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(engine.eval_dataloader)
    for iter_id, batch in enumerate(engine.eval_dataloader):
45 46 47 48 49 50 51 52 53 54 55 56 57
        if iter_id >= max_iter:
            break
        if iter_id == 5:
            for key in time_info:
                time_info[key].reset()

        time_info["reader_cost"].update(time.time() - tic)
        batch_size = batch[0].shape[0]
        batch[0] = paddle.to_tensor(batch[0])
        if not engine.config["Global"].get("use_multilabel", False):
            batch[1] = batch[1].reshape([-1, 1]).astype("int64")

        # image input
58
        with engine.auto_cast(is_eval=True):
59
            out = engine.model(batch[0])
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

        # just for DistributedBatchSampler issue: repeat sampling
        current_samples = batch_size * paddle.distributed.get_world_size()
        accum_samples += current_samples

        if isinstance(out, dict) and "Student" in out:
            out = out["Student"]
        if isinstance(out, dict) and "logits" in out:
            out = out["logits"]

        # gather Tensor when distributed
        if paddle.distributed.get_world_size() > 1:
            label_list = []
            device_id = paddle.distributed.ParallelEnv().device_id
            label = batch[1].cuda(device_id) if engine.config["Global"][
                "device"] == "gpu" else batch[1]
            paddle.distributed.all_gather(label_list, label)
            labels = paddle.concat(label_list, 0)

            if isinstance(out, list):
                preds = []
                for x in out:
82
                    pred_list = []
83 84 85
                    paddle.distributed.all_gather(pred_list, x)
                    pred_x = paddle.concat(pred_list, 0)
                    preds.append(pred_x)
D
dongshuilong 已提交
86
            else:
87 88 89 90
                pred_list = []
                paddle.distributed.all_gather(pred_list, out)
                preds = paddle.concat(pred_list, 0)

91
            if accum_samples > total_samples and not engine.use_dali:
92 93 94 95 96
                if isinstance(preds, list):
                    preds = [
                        pred[:total_samples + current_samples - accum_samples]
                        for pred in preds
                    ]
97
                else:
98 99 100 101 102
                    preds = preds[:total_samples + current_samples -
                                  accum_samples]
                labels = labels[:total_samples + current_samples -
                                accum_samples]
                current_samples = total_samples + current_samples - accum_samples
103
        else:
104 105 106 107 108
            labels = batch[1]
            preds = out

        # calc loss
        if engine.eval_loss_func is not None:
109
            with engine.auto_cast(is_eval=True):
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
                loss_dict = engine.eval_loss_func(preds, labels)

            for key in loss_dict:
                if key not in output_info:
                    output_info[key] = AverageMeter(key, '7.5f')
                output_info[key].update(float(loss_dict[key]), current_samples)

        #  calc metric
        if engine.eval_metric_func is not None:
            engine.eval_metric_func(preds, labels)
        time_info["batch_cost"].update(time.time() - tic)

        if iter_id % print_batch_step == 0:
            time_msg = "s, ".join([
                "{}: {:.5f}".format(key, time_info[key].avg)
                for key in time_info
126
            ])
127 128 129 130 131 132 133 134 135 136 137 138 139

            ips_msg = "ips: {:.5f} images/sec".format(
                batch_size / time_info["batch_cost"].avg)

            if "ATTRMetric" in engine.config["Metric"]["Eval"][0]:
                metric_msg = ""
            else:
                metric_msg = ", ".join([
                    "{}: {:.5f}".format(key, output_info[key].val)
                    for key in output_info
                ])
                metric_msg += ", {}".format(engine.eval_metric_func.avg_info)
            logger.info("[Eval][Epoch {}][Iter: {}/{}]{}, {}, {}".format(
140 141
                epoch_id, iter_id,
                len(engine.eval_dataloader), metric_msg, time_msg, ips_msg))
142 143

        tic = time.time()
144 145
    if engine.use_dali:
        engine.eval_dataloader.reset()
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

    if "ATTRMetric" in engine.config["Metric"]["Eval"][0]:
        metric_msg = ", ".join([
            "evalres: ma: {:.5f} label_f1: {:.5f} label_pos_recall: {:.5f} label_neg_recall: {:.5f} instance_f1: {:.5f} instance_acc: {:.5f} instance_prec: {:.5f} instance_recall: {:.5f}".
            format(*engine.eval_metric_func.attr_res())
        ])
        logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))

        # do not try to save best eval.model
        if engine.eval_metric_func is None:
            return -1
        # return 1st metric in the dict
        return engine.eval_metric_func.attr_res()[0]
    else:
        metric_msg = ", ".join([
            "{}: {:.5f}".format(key, output_info[key].avg)
            for key in output_info
        ])
        metric_msg += ", {}".format(engine.eval_metric_func.avg_info)
        logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))

        # do not try to save best eval.model
        if engine.eval_metric_func is None:
            return -1
        # return 1st metric in the dict
        return engine.eval_metric_func.avg