classification.py 7.1 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import platform
import paddle

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger


def classification_eval(engine, epoch_id=0):
    if hasattr(engine.eval_metric_func, "reset"):
        engine.eval_metric_func.reset()
    output_info = dict()
    time_info = {
        "batch_cost": AverageMeter(
            "batch_cost", '.5f', postfix=" s,"),
        "reader_cost": AverageMeter(
            "reader_cost", ".5f", postfix=" s,"),
    }
    print_batch_step = engine.config["Global"]["print_batch_step"]

    tic = time.time()
    total_samples = engine.dataloader_dict["Eval"].total_samples
    accum_samples = 0
    max_iter = engine.dataloader_dict["Eval"].max_iter
    for iter_id, batch in enumerate(engine.dataloader_dict["Eval"]):
        if iter_id >= max_iter:
            break
        if iter_id == 5:
            for key in time_info:
                time_info[key].reset()

        time_info["reader_cost"].update(time.time() - tic)
        batch_size = batch[0].shape[0]
        batch[0] = paddle.to_tensor(batch[0])
        if not engine.config["Global"].get("use_multilabel", False):
            batch[1] = batch[1].reshape([-1, 1]).astype("int64")

        # image input
        if engine.amp and engine.amp_eval:
            with paddle.amp.auto_cast(
                    custom_black_list={
                        "flatten_contiguous_range", "greater_than"
                    },
                    level=engine.amp_level):
                out = engine.model(batch)
        else:
            out = engine.model(batch)

        # just for DistributedBatchSampler issue: repeat sampling
        current_samples = batch_size * paddle.distributed.get_world_size()
        accum_samples += current_samples

        if isinstance(out, dict) and "Student" in out:
            out = out["Student"]
        if isinstance(out, dict) and "logits" in out:
            out = out["logits"]

        # gather Tensor when distributed
        if paddle.distributed.get_world_size() > 1:
            label_list = []
            device_id = paddle.distributed.ParallelEnv().device_id
            label = batch[1].cuda(device_id) if engine.config["Global"][
                "device"] == "gpu" else batch[1]
            paddle.distributed.all_gather(label_list, label)
            labels = paddle.concat(label_list, 0)

            if isinstance(out, list):
                preds = []
                for x in out:
86
                    pred_list = []
87 88 89
                    paddle.distributed.all_gather(pred_list, x)
                    pred_x = paddle.concat(pred_list, 0)
                    preds.append(pred_x)
D
dongshuilong 已提交
90
            else:
91 92 93 94
                pred_list = []
                paddle.distributed.all_gather(pred_list, out)
                preds = paddle.concat(pred_list, 0)

95 96
            if accum_samples > total_samples and not engine.config[
                    "Global"].get("use_dali", False):
97 98 99 100 101
                if isinstance(preds, list):
                    preds = [
                        pred[:total_samples + current_samples - accum_samples]
                        for pred in preds
                    ]
102
                else:
103 104 105 106 107
                    preds = preds[:total_samples + current_samples -
                                  accum_samples]
                labels = labels[:total_samples + current_samples -
                                accum_samples]
                current_samples = total_samples + current_samples - accum_samples
108
        else:
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
            labels = batch[1]
            preds = out

        # calc loss
        if engine.eval_loss_func is not None:
            if engine.amp and engine.amp_eval:
                with paddle.amp.auto_cast(
                        custom_black_list={
                            "flatten_contiguous_range", "greater_than"
                        },
                        level=engine.amp_level):
                    loss_dict = engine.eval_loss_func(preds, labels)
            else:
                loss_dict = engine.eval_loss_func(preds, labels)

            for key in loss_dict:
                if key not in output_info:
                    output_info[key] = AverageMeter(key, '7.5f')
                output_info[key].update(float(loss_dict[key]), current_samples)

        #  calc metric
        if engine.eval_metric_func is not None:
            engine.eval_metric_func(preds, labels)
        time_info["batch_cost"].update(time.time() - tic)

        if iter_id % print_batch_step == 0:
            time_msg = "s, ".join([
                "{}: {:.5f}".format(key, time_info[key].avg)
                for key in time_info
138
            ])
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

            ips_msg = "ips: {:.5f} images/sec".format(
                batch_size / time_info["batch_cost"].avg)

            if "ATTRMetric" in engine.config["Metric"]["Eval"][0]:
                metric_msg = ""
            else:
                metric_msg = ", ".join([
                    "{}: {:.5f}".format(key, output_info[key].val)
                    for key in output_info
                ])
                metric_msg += ", {}".format(engine.eval_metric_func.avg_info)
            logger.info("[Eval][Epoch {}][Iter: {}/{}]{}, {}, {}".format(
                epoch_id, iter_id, max_iter, metric_msg, time_msg, ips_msg))

        tic = time.time()
155
    if engine.config["Global"].get("use_dali", False):
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        engine.dataloader_dict["Eval"].reset()

    if "ATTRMetric" in engine.config["Metric"]["Eval"][0]:
        metric_msg = ", ".join([
            "evalres: ma: {:.5f} label_f1: {:.5f} label_pos_recall: {:.5f} label_neg_recall: {:.5f} instance_f1: {:.5f} instance_acc: {:.5f} instance_prec: {:.5f} instance_recall: {:.5f}".
            format(*engine.eval_metric_func.attr_res())
        ])
        logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))

        # do not try to save best eval.model
        if engine.eval_metric_func is None:
            return -1
        # return 1st metric in the dict
        return engine.eval_metric_func.attr_res()[0]
    else:
        metric_msg = ", ".join([
            "{}: {:.5f}".format(key, output_info[key].avg)
            for key in output_info
        ])
        metric_msg += ", {}".format(engine.eval_metric_func.avg_info)
        logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))

        # do not try to save best eval.model
        if engine.eval_metric_func is None:
            return -1
        # return 1st metric in the dict
        return engine.eval_metric_func.avg