README_en.md 7.0 KB
Newer Older
L
littletomatodonkey 已提交
1
[简体中文](README_ch.md) | English
W
weishengyu 已提交
2 3 4 5 6

# PaddleClas

## Introduction

L
lilithzhou 已提交
7
PaddleClas is an image recognition toolset for industry and academia, helping users train better computer vision models and apply them in real scenarios.
W
weishengyu 已提交
8

L
lilithzhou 已提交
9
**Recent updates**
W
weishengyu 已提交
10

T
Tingquan Gao 已提交
11
- 2021.09.17 Add PP-LCNet series model developed by PaddleClas, these models show strong competitiveness on Intel CPUs.
C
cuicheng01 已提交
12
For the introduction of PP-LCNet, please refer to [paper](https://arxiv.org/pdf/2109.15099.pdf) or [PP-LCNet model introduction](docs/en/models/PP-LCNet_en.md). The metrics and pretrained model are available [here](docs/en/ImageNet_models_en.md).
C
cuicheng01 已提交
13

littletomatodonkey's avatar
littletomatodonkey 已提交
14
- 2021.06.29 Add Swin-transformer series model,Highest top1 acc on ImageNet1k dataset reaches 87.2%, training, evaluation and inference are all supported. Pretrained models can be downloaded [here](docs/en/models/models_intro_en.md).
C
cuicheng01 已提交
15
- 2021.06.16 PaddleClas release/2.2. Add metric learning and vector search modules. Add product recognition, animation character recognition, vehicle recognition and logo recognition. Added 30 pretrained models of LeViT, Twins, TNT, DLA, HarDNet, and RedNet, and the accuracy is roughly the same as that of the paper.
W
weishengyu 已提交
16 17 18 19
- [more](./docs/en/update_history_en.md)

## Features

L
lilithzhou 已提交
20 21
- A practical image recognition system consist of detection, feature learning and retrieval modules, widely applicable to all types of image recognition tasks.
Four sample solutions are provided, including product recognition, vehicle recognition, logo recognition and animation character recognition.
W
weishengyu 已提交
22

C
cuicheng01 已提交
23
- Rich library of pre-trained models: Provide a total of 164 ImageNet pre-trained models in 35 series, among which 6 selected series of models support fast structural modification.
W
weishengyu 已提交
24

L
lilithzhou 已提交
25
- Comprehensive and easy-to-use feature learning components: 12 metric learning methods are integrated and can be combined and switched at will through configuration files.
W
weishengyu 已提交
26

L
lilithzhou 已提交
27
- SSLD knowledge distillation: The 14 classification pre-training models generally improved their accuracy by more than 3%; among them, the ResNet50_vd model achieved a Top-1 accuracy of 84.0% on the Image-Net-1k dataset and the Res2Net200_vd pre-training model achieved a Top-1 accuracy of 85.1%.
W
weishengyu 已提交
28

L
lilithzhou 已提交
29
- Data augmentation: Provide 8 data augmentation algorithms such as AutoAugment, Cutout, Cutmix, etc.  with detailed introduction, code replication and evaluation of effectiveness in a unified experimental environment.
W
weishengyu 已提交
30

L
littletomatodonkey 已提交
31

W
weishengyu 已提交
32

L
LaraStuStu 已提交
33

L
lilithzhou 已提交
34
<div align="center">
L
littletomatodonkey 已提交
35
<img src="./docs/images/recognition_en.gif"  width = "400" />
L
lilithzhou 已提交
36
</div>
W
weishengyu 已提交
37

D
dyning 已提交
38

L
lilithzhou 已提交
39
## Welcome to Join the Technical Exchange Group
W
weishengyu 已提交
40

L
lilithzhou 已提交
41
* You can also scan the QR code below to join the PaddleClas WeChat group to get more efficient answers to your questions and to communicate with developers from all walks of life. We look forward to hearing from you.
W
weishengyu 已提交
42 43

<div align="center">
44
<img src="https://user-images.githubusercontent.com/12560511/160273340-831de8c3-f31d-44d1-9437-fcd4765a6851.jpg" width="200"/>
W
weishengyu 已提交
45 46
</div>

L
littletomatodonkey 已提交
47
## Quick Start
L
littletomatodonkey 已提交
48
Quick experience of image recognition:[Link](./docs/en/tutorials/quick_start_recognition_en.md)
W
weishengyu 已提交
49 50 51

## Tutorials

B
Bin Lu 已提交
52
- [Quick Installation](./docs/en/tutorials/install_en.md)
W
weishengyu 已提交
53
- [Quick Start of Recognition](./docs/en/tutorials/quick_start_recognition_en.md)
W
weishengyu 已提交
54 55
- [Introduction to Image Recognition Systems](#Introduction_to_Image_Recognition_Systems)
- [Demo images](#Demo_images)
W
weishengyu 已提交
56
- Algorithms Introduction
C
cuicheng01 已提交
57
    - [Backbone Network and Pre-trained Model Library](./docs/en/ImageNet_models_en.md)
L
littletomatodonkey 已提交
58
    - [Mainbody Detection](./docs/en/application/mainbody_detection_en.md)
W
weishengyu 已提交
59 60 61 62 63 64
    - [Image Classification](./docs/en/tutorials/image_classification_en.md)
    - [Feature Learning](./docs/en/application/feature_learning_en.md)
        - [Product Recognition](./docs/en/application/product_recognition_en.md)
        - [Vehicle Recognition](./docs/en/application/vehicle_recognition_en.md)
        - [Logo Recognition](./docs/en/application/logo_recognition_en.md)
        - [Animation Character Recognition](./docs/en/application/cartoon_character_recognition_en.md)
W
weishengyu 已提交
65
    - [Vector Search](./deploy/vector_search/README.md)
L
lilithzhou 已提交
66
- Models Training/Evaluation
W
weishengyu 已提交
67
    - [Image Classification](./docs/en/tutorials/getting_started_en.md)
W
weishengyu 已提交
68
    - [Feature Learning](./docs/en/tutorials/getting_started_retrieval_en.md)
W
weishengyu 已提交
69
- Inference Model Prediction
W
weishengyu 已提交
70
    - [Python Inference](./docs/en/inference.md)
D
dongshuilong 已提交
71
    - [C++ Classfication Inference](./deploy/cpp/readme_en.md)[C++ PP-ShiTu Inference](deploy/cpp_shitu/readme_en.md)
W
weishengyu 已提交
72 73 74 75
- Model Deploy (only support classification for now, recognition coming soon)
    - [Hub Serving Deployment](./deploy/hubserving/readme_en.md)
    - [Mobile Deployment](./deploy/lite/readme_en.md)
    - [Inference Using whl](./docs/en/whl_en.md)
L
lilithzhou 已提交
76
- Advanced Tutorial
W
weishengyu 已提交
77 78 79
    - [Knowledge Distillation](./docs/en/advanced_tutorials/distillation/distillation_en.md)
    - [Model Quantization](./docs/en/extension/paddle_quantization_en.md)
    - [Data Augmentation](./docs/en/advanced_tutorials/image_augmentation/ImageAugment_en.md)
W
weishengyu 已提交
80 81 82
- [License](#License)
- [Contribution](#Contribution)

W
weishengyu 已提交
83
<a name="Introduction_to_Image_Recognition_Systems"></a>
L
lilithzhou 已提交
84
## Introduction to Image Recognition Systems
W
weishengyu 已提交
85

L
lilithzhou 已提交
86
<div align="center">
W
weishengyu 已提交
87
<img src="./docs/images/structure.jpg"  width = "800" />
L
lilithzhou 已提交
88
</div>
W
weishengyu 已提交
89

L
lilithzhou 已提交
90 91 92 93
Image recognition can be divided into three steps:
- (1)Identify region proposal for target objects through a detection model;
- (2)Extract features for each region proposal;
- (3)Search features in the retrieval database and output results;
W
weishengyu 已提交
94

L
lilithzhou 已提交
95
For a new unknown category, there is no need to retrain the model, just prepare images of new category, extract features and update retrieval database and the category can be recognised.
W
weishengyu 已提交
96

W
weishengyu 已提交
97
<a name="Demo_images"></a>
L
LaraStuStu 已提交
98
## Demo images [more](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.2/docs/images/recognition/more_demo_images)
99 100
- Product recognition
<div align="center">
L
LaraStuStu 已提交
101
<img src="https://user-images.githubusercontent.com/18028216/122769644-51604f80-d2d7-11eb-8290-c53b12a5c1f6.gif"  width = "400" />
102 103 104 105
</div>

- Cartoon character recognition
<div align="center">
L
LaraStuStu 已提交
106
<img src="https://user-images.githubusercontent.com/18028216/122769746-6b019700-d2d7-11eb-86df-f1d710999ba6.gif"  width = "400" />
107 108 109 110
</div>

- Logo recognition
<div align="center">
L
LaraStuStu 已提交
111
<img src="https://user-images.githubusercontent.com/18028216/122769837-7fde2a80-d2d7-11eb-9b69-04140e9d785f.gif"  width = "400" />
112
</div>
W
weishengyu 已提交
113

114 115
- Car recognition
<div align="center">
L
LaraStuStu 已提交
116
<img src="https://user-images.githubusercontent.com/18028216/122769916-8ec4dd00-d2d7-11eb-8c60-42d89e25030c.gif"  width = "400" />
117 118 119
</div>

<a name="License"></a>
L
lilithzhou 已提交
120 121
## License
PaddleClas is released under the Apache 2.0 license <a href="https://github.com/PaddlePaddle/PaddleCLS/blob/master/LICENSE">Apache 2.0 license</a>
W
weishengyu 已提交
122 123 124 125 126 127


<a name="Contribution"></a>
## Contribution
Contributions are highly welcomed and we would really appreciate your feedback!!

L
lilithzhou 已提交
128

W
weishengyu 已提交
129 130 131
- Thank [nblib](https://github.com/nblib) to fix bug of RandErasing.
- Thank [chenpy228](https://github.com/chenpy228) to fix some typos PaddleClas.
- Thank [jm12138](https://github.com/jm12138) to add ViT, DeiT models and RepVGG models into PaddleClas.
L
lilithzhou 已提交
132
- Thank [FutureSI](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/76563) to parse and summarize the PaddleClas code.