提交 81b83351 编写于 作者: C cuicheng01

Add LCNet docs

上级 4150df91
......@@ -7,7 +7,7 @@
飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。
**近期更新**
- 2021.09.08 增加PaddleClas自研LCNet系列模型, 这些模型在Intel CPU上有较强的竞争力。相关指标和预训练权重可以从 [这里](docs/zh_CN/ImageNet_models.md)下载。
- 2021.08.11 更新7个[FAQ](docs/zh_CN/faq_series/faq_2021_s2.md)
- 2021.06.29 添加Swin-transformer系列模型,ImageNet1k数据集上Top1 acc最高精度可达87.2%;支持训练预测评估与whl包部署,预训练模型可以从[这里](docs/zh_CN/models/models_intro.md)下载。
- 2021.06.22,23,24 PaddleClas官方研发团队带来技术深入解读三日直播课。课程回放:[https://aistudio.baidu.com/aistudio/course/introduce/24519](https://aistudio.baidu.com/aistudio/course/introduce/24519)
......
......@@ -8,6 +8,8 @@ PaddleClas is an image recognition toolset for industry and academia, helping us
**Recent updates**
- 2021.09.08 Add LCNet series model developed by PaddleClas, these models show strong competitiveness on Intel CPUs. The metrics and pretrained model can be downloaded [here](docs/en/ImageNet_models_en.md)
- 2021.06.29 Add Swin-transformer series model,Highest top1 acc on ImageNet1k dataset reaches 87.2%, training, evaluation and inference are all supported. Pretrained models can be downloaded [here](docs/en/models/models_intro_en.md).
- 2021.06.16 PaddleClas release/2.2. Add metric learning and vector search modules. Add product recognition, animation character recognition, vehicle recognition and logo recognition. Added 30 pretrained models of LeViT, Twins, TNT, DLA, HarDNet, and RedNet, and the accuracy is roughly the same as that of the paper.
- [more](./docs/en/update_history_en.md)
......
......@@ -26,11 +26,11 @@ Accuracy and inference time of the prtrained models based on SSLD distillation a
| Model | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.434 | 6.222 | 7.39 | 21.82 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams) |
| ResNet50_vd_<br>ssld | 0.830 | 0.792 | 0.039 | 3.531 | 8.090 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) |
| ResNet101_vd_<br>ssld | 0.837 | 0.802 | 0.035 | 6.117 | 13.762 | 16.1 | 44.57 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams) |
| Res2Net50_vd_<br>26w_4s_ssld | 0.831 | 0.798 | 0.033 | 4.527 | 9.657 | 8.37 | 25.06 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams) |
| Res2Net101_vd_<br>26w_4s_ssld | 0.839 | 0.806 | 0.033 | 8.087 | 17.312 | 16.67 | 45.22 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams) |
| Res2Net200_vd_<br>26w_4s_ssld | 0.851 | 0.812 | 0.049 | 14.678 | 32.350 | 31.49 | 76.21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) |
| ResNet50_vd_ssld | 0.830 | 0.792 | 0.039 | 3.531 | 8.090 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) |
| ResNet101_vd_ssld | 0.837 | 0.802 | 0.035 | 6.117 | 13.762 | 16.1 | 44.57 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams) |
| Res2Net50_vd_26w_4s_ssld | 0.831 | 0.798 | 0.033 | 4.527 | 9.657 | 8.37 | 25.06 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams) |
| Res2Net101_vd_26w_4s_ssld | 0.839 | 0.806 | 0.033 | 8.087 | 17.312 | 16.67 | 45.22 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams) |
| Res2Net200_vd_26w_4s_ssld | 0.851 | 0.812 | 0.049 | 14.678 | 32.350 | 31.49 | 76.21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) |
| HRNet_W18_C_ssld | 0.812 | 0.769 | 0.043 | 7.406 | 13.297 | 4.14 | 21.29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) |
| HRNet_W48_C_ssld | 0.836 | 0.790 | 0.046 | 13.707 | 34.435 | 34.58 | 77.47 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) |
| SE_HRNet_W64_C_ssld | 0.848 | - | - | 31.697 | 94.995 | 57.83 | 128.97 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) |
......@@ -38,19 +38,44 @@ Accuracy and inference time of the prtrained models based on SSLD distillation a
* Mobile-side distillation pretrained models
| Model | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | SD855 time(ms)<br>bs=1 | Flops(G) | Params(M) | 模型大小(M) | Download Address |
| Model | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | SD855 time(ms)<br>bs=1 | Flops(G) | Params(M) | Storage Size(M) | Download Address |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
| MobileNetV1_<br>ssld | 0.779 | 0.710 | 0.069 | 32.523 | 1.11 | 4.19 | 16 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams) |
| MobileNetV2_<br>ssld | 0.767 | 0.722 | 0.045 | 23.318 | 0.6 | 3.44 | 14 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) |
| MobileNetV3_<br>small_x0_35_ssld | 0.556 | 0.530 | 0.026 | 2.635 | 0.026 | 1.66 | 6.9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) |
| MobileNetV3_<br>large_x1_0_ssld | 0.790 | 0.753 | 0.036 | 19.308 | 0.45 | 5.47 | 21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) |
| MobileNetV3_small_<br>x1_0_ssld | 0.713 | 0.682 | 0.031 | 6.546 | 0.123 | 2.94 | 12 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) |
| GhostNet_<br>x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.983 | 0.44 | 7.3 | 29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams)
| MobileNetV1_ssld | 0.779 | 0.710 | 0.069 | 32.523 | 1.11 | 4.19 | 16 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams) |
| MobileNetV2_ssld | 0.767 | 0.722 | 0.045 | 23.318 | 0.6 | 3.44 | 14 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) |
| MobileNetV3_small_x0_35_ssld | 0.556 | 0.530 | 0.026 | 2.635 | 0.026 | 1.66 | 6.9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) |
| MobileNetV3_large_x1_0_ssld | 0.790 | 0.753 | 0.036 | 19.308 | 0.45 | 5.47 | 21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) |
| MobileNetV3_small_x1_0_ssld | 0.713 | 0.682 | 0.031 | 6.546 | 0.123 | 2.94 | 12 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) |
| GhostNet_x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.983 | 0.44 | 7.3 | 29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams)
* Intel-CPU-side distillation pretrained models
| Model | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | Intel-Xeon-Gold-6148 time(ms)<br>bs=1 | Flops(M) | Params(M) | Download Address |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
| LCNet_x0_5_ssld | 0.661 | 0.631 | 0.030 | 2.05 | 47 | 1.9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x0_5_ssld_pretrained.pdparams) |
| LCNet_x1_0_ssld | 0.744 | 0.713 | 0.033 | 2.46 | 161 | 3.0 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x1_0_ssld_pretrained.pdparams) |
| LCNet_x2_5_ssld | 0.808 | 0.766 | 0.042 | 5.39 | 906 | 9.0 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x2_5_ssld_pretrained.pdparams) |
* Note: `Reference Top-1 Acc` means accuracy of pretrained models which are trained on ImageNet1k dataset.
<a name="LCNet_series"></a>
### LCNet_series
Accuracy and inference time metrics of LCNet series models are shown as follows. More detailed information can be refered to [LCNet series tutorial](../en/models/LCNet_en.md).
| Model | Top-1 Acc | Top-5 Acc | Intel-Xeon-Gold-6148 time(ms)<br>bs=1 | FLOPs(M) | Params(M) | Download Address |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| LCNet_x0_25 |0.5186 | 0.7565 | 1.74 | 18 | 1.5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x0_25_pretrained.pdparams) |
| LCNet_x0_35 |0.5809 | 0.8083 | 1.92 | 29 | 1.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x0_35_pretrained.pdparams) |
| LCNet_x0_5 |0.6314 | 0.8466 | 2.05 | 47 | 1.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x0_5_pretrained.pdparams) |
| LCNet_x0_75 |0.6818 | 0.8830 | 2.29 | 99 | 2.4 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x0_75_pretrained.pdparams) |
| LCNet_x1_0 |0.7132 | 0.9003 | 2.46 | 161 | 3.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x1_0_pretrained.pdparams) |
| LCNet_x1_5 |0.7371 | 0.9153 | 3.19 | 342 | 4.5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x1_5_pretrained.pdparams) |
| LCNet_x2_0 |0.7518 | 0.9227 | 4.27 | 590 | 6.5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x2_0_pretrained.pdparams) |
| LCNet_x2_5 |0.7660 | 0.9300 | 5.39 | 906 | 9.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x2_5_pretrained.pdparams) |
<a name="ResNet_and_Vd_series"></a>
### ResNet and Vd series
......
# LCNet series
## Overview
The LCNet series is a network that has excellent performance on Intel-CPU proposed by the Baidu PaddleCV team. The author summarizes some methods that can improve the accuracy of the model on Intel-CPU but hardly increase the inference time. The author combines these methods into a new network, namely LCNet. Compared with other lightweight networks, LCNet can achieve higher accuracy with the same inference time. LCNet has shown strong competitiveness in image classification, object detection, and semantic segmentation.
## Accuracy, FLOPS and Parameters
| Models | Top1 | Top5 | FLOPs<br>(M) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| LCNet_x0_25 |0.5186 | 0.7565 | 18 | 1.5 |
| LCNet_x0_35 |0.5809 | 0.8083 | 29 | 1.6 |
| LCNet_x0_5 |0.6314 | 0.8466 | 47 | 1.9 |
| LCNet_x0_75 |0.6818 | 0.8830 | 99 | 2.4 |
| LCNet_x1_0 |0.7132 | 0.9003 | 161 | 3.0 |
| LCNet_x1_5 |0.7371 | 0.9153 | 342 | 4.5 |
| LCNet_x2_0 |0.7518 | 0.9227 | 590 | 6.5 |
| LCNet_x2_5 |0.7660 | 0.9300 | 906 | 9.0 |
| LCNet_x0_5_ssld |0.6610 | 0.8646 | 47 | 1.9 |
| LCNet_x1_0_ssld |0.7439 | 0.9209 | 161 | 3.0 |
| LCNet_x2_5_ssld |0.8082 | 0.9533 | 906 | 9.0 |
## Inference speed based on Intel(R)-Xeon(R)-Gold-6148-CPU
| Models | Crop Size | Resize Short Size | FP32<br>Batch Size=1<br>(ms) |
|------------------|-----------|-------------------|--------------------------|
| LCNet_x0_25 | 224 | 256 | 1.74 |
| LCNet_x0_35 | 224 | 256 | 1.92 |
| LCNet_x0_5 | 224 | 256 | 2.05 |
| LCNet_x0_75 | 224 | 256 | 2.29 |
| LCNet_x1_0 | 224 | 256 | 2.46 |
| LCNet_x1_5 | 224 | 256 | 3.19 |
| LCNet_x2_0 | 224 | 256 | 4.27 |
| LCNet_x2_5 | 224 | 256 | 5.39 |
| LCNet_x0_5_ssld | 224 | 256 | 2.05 |
| LCNet_x1_0_ssld | 224 | 256 | 2.46 |
| LCNet_x2_5_ssld | 224 | 256 | 5.39 |
......@@ -31,9 +31,9 @@
| 模型 | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址 |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.434 | 6.222 | 7.39 | 21.82 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams) |
| ResNet50_vd_<br>ssld | 0.830 | 0.792 | 0.039 | 3.531 | 8.090 | 8.67 | 25.58 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) |
| ResNet101_vd_<br>ssld | 0.837 | 0.802 | 0.035 | 6.117 | 13.762 | 16.1 | 44.57 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams) |
| Res2Net50_vd_<br>26w_4s_ssld | 0.831 | 0.798 | 0.033 | 4.527 | 9.657 | 8.37 | 25.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams) |
| ResNet50_vd_ssld | 0.830 | 0.792 | 0.039 | 3.531 | 8.090 | 8.67 | 25.58 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) |
| ResNet101_vd_ssld | 0.837 | 0.802 | 0.035 | 6.117 | 13.762 | 16.1 | 44.57 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams) |
| Res2Net50_vd_26w_4s_ssld | 0.831 | 0.798 | 0.033 | 4.527 | 9.657 | 8.37 | 25.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams) |
| Res2Net101_vd_<br>26w_4s_ssld | 0.839 | 0.806 | 0.033 | 8.087 | 17.312 | 16.67 | 45.22 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams) |
| Res2Net200_vd_<br>26w_4s_ssld | 0.851 | 0.812 | 0.049 | 14.678 | 32.350 | 31.49 | 76.21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) |
| HRNet_W18_C_ssld | 0.812 | 0.769 | 0.043 | 7.406 | 13.297 | 4.14 | 21.29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) |
......@@ -45,16 +45,44 @@
| 模型 | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | SD855 time(ms)<br>bs=1 | Flops(G) | Params(M) | 模型大小(M) | 下载地址 |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
| MobileNetV1_<br>ssld | 0.779 | 0.710 | 0.069 | 32.523 | 1.11 | 4.19 | 16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams) |
| MobileNetV2_<br>ssld | 0.767 | 0.722 | 0.045 | 23.318 | 0.6 | 3.44 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) |
| MobileNetV3_<br>small_x0_35_ssld | 0.556 | 0.530 | 0.026 | 2.635 | 0.026 | 1.66 | 6.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) |
| MobileNetV3_<br>large_x1_0_ssld | 0.790 | 0.753 | 0.036 | 19.308 | 0.45 | 5.47 | 21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) |
| MobileNetV3_small_<br>x1_0_ssld | 0.713 | 0.682 | 0.031 | 6.546 | 0.123 | 2.94 | 12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) |
| GhostNet_<br>x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.983 | 0.44 | 7.3 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams) |
| MobileNetV1_ssld | 0.779 | 0.710 | 0.069 | 32.523 | 1.11 | 4.19 | 16 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams) |
| MobileNetV2_ssld | 0.767 | 0.722 | 0.045 | 23.318 | 0.6 | 3.44 | 14 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) |
| MobileNetV3_small_x0_35_ssld | 0.556 | 0.530 | 0.026 | 2.635 | 0.026 | 1.66 | 6.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) |
| MobileNetV3_large_x1_0_ssld | 0.790 | 0.753 | 0.036 | 19.308 | 0.45 | 5.47 | 21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) |
| MobileNetV3_small_x1_0_ssld | 0.713 | 0.682 | 0.031 | 6.546 | 0.123 | 2.94 | 12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) |
| GhostNet_x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.983 | 0.44 | 7.3 | 29 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams) |
* Intel CPU端知识蒸馏模型
| 模型 | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | Intel-Xeon-Gold-6148 time(ms)<br>bs=1 | Flops(M) | Params(M) | 下载地址 |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|
| LCNet_x0_5_ssld | 0.661 | 0.631 | 0.030 | 2.05 | 47 | 1.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x0_5_ssld_pretrained.pdparams) |
| LCNet_x1_0_ssld | 0.744 | 0.713 | 0.033 | 2.46 | 161 | 3.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x1_0_ssld_pretrained.pdparams) |
| LCNet_x2_5_ssld | 0.808 | 0.766 | 0.042 | 5.39 | 906 | 9.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x2_5_ssld_pretrained.pdparams) |
* 注: `Reference Top-1 Acc`表示PaddleClas基于ImageNet1k数据集训练得到的预训练模型精度。
<a name="LCNet系列"></a>
### LCNet系列
LCNet系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[LCNet系列模型文档](./models/LCNet.md)
| 模型 | Top-1 Acc | Top-5 Acc | Intel-Xeon-Gold-6148 time(ms)<br>bs=1 | FLOPs(M) | Params(M) | 下载地址 |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| LCNet_x0_25 |0.5186 | 0.7565 | 1.74 | 18 | 1.5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x0_25_pretrained.pdparams) |
| LCNet_x0_35 |0.5809 | 0.8083 | 1.92 | 29 | 1.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x0_35_pretrained.pdparams) |
| LCNet_x0_5 |0.6314 | 0.8466 | 2.05 | 47 | 1.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x0_5_pretrained.pdparams) |
| LCNet_x0_75 |0.6818 | 0.8830 | 2.29 | 99 | 2.4 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x0_75_pretrained.pdparams) |
| LCNet_x1_0 |0.7132 | 0.9003 | 2.46 | 161 | 3.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x1_0_pretrained.pdparams) |
| LCNet_x1_5 |0.7371 | 0.9153 | 3.19 | 342 | 4.5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x1_5_pretrained.pdparams) |
| LCNet_x2_0 |0.7518 | 0.9227 | 4.27 | 590 | 6.5 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x2_0_pretrained.pdparams) |
| LCNet_x2_5 |0.7660 | 0.9300 | 5.39 | 906 | 9.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/LCNet_x2_5_pretrained.pdparams) |
<a name="ResNet及其Vd系列"></a>
### ResNet及其Vd系列
......@@ -429,7 +457,7 @@ ViT(Vision Transformer)与DeiT(Data-efficient Image Transformers)系列
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | 下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
| TNT_small | 0.8121 |0.9563 | | | 5.2 | 23.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams) | |
| TNT_small | 0.8121 |0.9563 | | | 5.2 | 23.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams) | |
**注**:TNT模型的数据预处理部分`NormalizeImage`中的`mean``std`均为0.5。
......
# LCNet系列
## 概述
LCNet系列是百度PaddleCV团队提出的一种在Intel-CPU上表现优异的网络,作者总结了一些在Intel-CPU上可以提升模型精度但几乎不增加推理耗时的方法,将这些方法组合成了一个新的网络,即LCNet。与其他轻量级网络相比,LCNet可以在相同延时下取得更高的精度。LCNet已在图像分类、目标检测、语义分割上表现出了强大的竞争力。
## 精度、FLOPS和参数量
| Models | Top1 | Top5 | FLOPs<br>(M) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| LCNet_x0_25 |0.5186 | 0.7565 | 18 | 1.5 |
| LCNet_x0_35 |0.5809 | 0.8083 | 29 | 1.6 |
| LCNet_x0_5 |0.6314 | 0.8466 | 47 | 1.9 |
| LCNet_x0_75 |0.6818 | 0.8830 | 99 | 2.4 |
| LCNet_x1_0 |0.7132 | 0.9003 | 161 | 3.0 |
| LCNet_x1_5 |0.7371 | 0.9153 | 342 | 4.5 |
| LCNet_x2_0 |0.7518 | 0.9227 | 590 | 6.5 |
| LCNet_x2_5 |0.7660 | 0.9300 | 906 | 9.0 |
| LCNet_x0_5_ssld |0.6610 | 0.8646 | 47 | 1.9 |
| LCNet_x1_0_ssld |0.7439 | 0.9209 | 161 | 3.0 |
| LCNet_x2_5_ssld |0.8082 | 0.9533 | 906 | 9.0 |
## 基于Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz的预测速度
| Models | Crop Size | Resize Short Size | FP32<br>Batch Size=1<br>(ms) |
|------------------|-----------|-------------------|--------------------------|
| LCNet_x0_25 | 224 | 256 | 1.74 |
| LCNet_x0_35 | 224 | 256 | 1.92 |
| LCNet_x0_5 | 224 | 256 | 2.05 |
| LCNet_x0_75 | 224 | 256 | 2.29 |
| LCNet_x1_0 | 224 | 256 | 2.46 |
| LCNet_x1_5 | 224 | 256 | 3.19 |
| LCNet_x2_0 | 224 | 256 | 4.27 |
| LCNet_x2_5 | 224 | 256 | 5.39 |
| LCNet_x0_5_ssld | 224 | 256 | 2.05 |
| LCNet_x1_0_ssld | 224 | 256 | 2.46 |
| LCNet_x2_5_ssld | 224 | 256 | 5.39 |
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册