paddleclas.py 15.8 KB
Newer Older
C
chenziheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, ''))
T
Tingquan Gao 已提交
33 34
import argparse
import shutil
C
chenziheng 已提交
35 36 37 38 39 40

import cv2
import numpy as np
import tarfile
import requests
from tqdm import tqdm
T
Tingquan Gao 已提交
41 42 43
from tools.infer.utils import get_image_list, preprocess, save_prelabel_results
from tools.infer.predict import Predictor

C
chenziheng 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
__all__ = ['PaddleClas']
BASE_DIR = os.path.expanduser("~/.paddleclas/")
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, 'inference_model')
BASE_IMAGES_DIR = os.path.join(BASE_DIR, 'images')

model_names = {
    'Xception71', 'SE_ResNeXt101_32x4d', 'ShuffleNetV2_x0_5', 'ResNet34',
    'ShuffleNetV2_x2_0', 'ResNeXt101_32x4d', 'HRNet_W48_C_ssld',
    'ResNeSt50_fast_1s1x64d', 'MobileNetV2_x2_0', 'MobileNetV3_large_x1_0',
    'Fix_ResNeXt101_32x48d_wsl', 'MobileNetV2_ssld', 'ResNeXt101_vd_64x4d',
    'ResNet34_vd_ssld', 'MobileNetV3_small_x1_0', 'VGG11',
    'ResNeXt50_vd_32x4d', 'MobileNetV3_large_x1_25',
    'MobileNetV3_large_x1_0_ssld', 'MobileNetV2_x0_75',
    'MobileNetV3_small_x0_35', 'MobileNetV1_x0_75', 'MobileNetV1_ssld',
    'ResNeXt50_32x4d', 'GhostNet_x1_3_ssld', 'Res2Net101_vd_26w_4s',
    'ResNet152', 'Xception65', 'EfficientNetB0', 'ResNet152_vd', 'HRNet_W18_C',
    'Res2Net50_14w_8s', 'ShuffleNetV2_x0_25', 'HRNet_W64_C',
    'Res2Net50_vd_26w_4s_ssld', 'HRNet_W18_C_ssld', 'ResNet18_vd',
    'ResNeXt101_32x16d_wsl', 'SE_ResNeXt50_32x4d', 'SqueezeNet1_1',
    'SENet154_vd', 'SqueezeNet1_0', 'GhostNet_x1_0', 'ResNet50_vc', 'DPN98',
    'HRNet_W48_C', 'DenseNet264', 'SE_ResNet34_vd', 'HRNet_W44_C',
    'MobileNetV3_small_x1_25', 'MobileNetV1_x0_5', 'ResNet200_vd', 'VGG13',
    'EfficientNetB3', 'EfficientNetB2', 'ShuffleNetV2_x0_33',
    'MobileNetV3_small_x0_75', 'ResNeXt152_vd_32x4d', 'ResNeXt101_32x32d_wsl',
    'ResNet18', 'MobileNetV3_large_x0_35', 'Res2Net50_26w_4s',
    'MobileNetV2_x0_5', 'EfficientNetB0_small', 'ResNet101_vd_ssld',
    'EfficientNetB6', 'EfficientNetB1', 'EfficientNetB7', 'ResNeSt50',
    'ShuffleNetV2_x1_0', 'MobileNetV3_small_x1_0_ssld', 'InceptionV4',
    'GhostNet_x0_5', 'SE_HRNet_W64_C_ssld', 'ResNet50_ACNet_deploy',
    'Xception41', 'ResNet50', 'Res2Net200_vd_26w_4s_ssld',
    'Xception41_deeplab', 'SE_ResNet18_vd', 'SE_ResNeXt50_vd_32x4d',
    'HRNet_W30_C', 'HRNet_W40_C', 'VGG19', 'Res2Net200_vd_26w_4s',
    'ResNeXt101_32x8d_wsl', 'ResNet50_vd', 'ResNeXt152_64x4d', 'DarkNet53',
    'ResNet50_vd_ssld', 'ResNeXt101_64x4d', 'MobileNetV1_x0_25',
    'Xception65_deeplab', 'AlexNet', 'ResNet101', 'DenseNet121',
    'ResNet50_vd_v2', 'Res2Net50_vd_26w_4s', 'ResNeXt101_32x48d_wsl',
    'MobileNetV3_large_x0_5', 'MobileNetV2_x0_25', 'DPN92', 'ResNet101_vd',
    'MobileNetV2_x1_5', 'DPN131', 'ResNeXt50_vd_64x4d', 'ShuffleNetV2_x1_5',
    'ResNet34_vd', 'MobileNetV1', 'ResNeXt152_vd_64x4d', 'DPN107', 'VGG16',
    'ResNeXt50_64x4d', 'RegNetX_4GF', 'DenseNet161', 'GhostNet_x1_3',
    'HRNet_W32_C', 'Fix_ResNet50_vd_ssld_v2', 'Res2Net101_vd_26w_4s_ssld',
    'DenseNet201', 'DPN68', 'EfficientNetB4', 'ResNeXt152_32x4d',
    'InceptionV3', 'ShuffleNetV2_swish', 'GoogLeNet', 'ResNet50_vd_ssld_v2',
    'SE_ResNet50_vd', 'MobileNetV2', 'ResNeXt101_vd_32x4d',
    'MobileNetV3_large_x0_75', 'MobileNetV3_small_x0_5', 'DenseNet169',
    'EfficientNetB5'
}


def download_with_progressbar(url, save_path):
    response = requests.get(url, stream=True)
    total_size_in_bytes = int(response.headers.get('content-length', 0))
    block_size = 1024  # 1 Kibibyte
    progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
    with open(save_path, 'wb') as file:
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes:
T
Tingquan Gao 已提交
104 105 106
        raise Exception(
            "Something went wrong while downloading model/image from {}".
            format(url))
C
chenziheng 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140


def maybe_download(model_storage_directory, url):
    # using custom model
    tar_file_name_list = [
        'inference.pdiparams', 'inference.pdiparams.info', 'inference.pdmodel'
    ]
    if not os.path.exists(
            os.path.join(model_storage_directory, 'inference.pdiparams')
    ) or not os.path.exists(
            os.path.join(model_storage_directory, 'inference.pdmodel')):
        tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
        print('download {} to {}'.format(url, tmp_path))
        os.makedirs(model_storage_directory, exist_ok=True)
        download_with_progressbar(url, tmp_path)
        with tarfile.open(tmp_path, 'r') as tarObj:
            for member in tarObj.getmembers():
                filename = None
                for tar_file_name in tar_file_name_list:
                    if tar_file_name in member.name:
                        filename = tar_file_name
                if filename is None:
                    continue
                file = tarObj.extractfile(member)
                with open(
                        os.path.join(model_storage_directory, filename),
                        'wb') as f:
                    f.write(file.read())
        os.remove(tmp_path)


def load_label_name_dict(path):
    if not os.path.exists(path):
        print(
T
Tingquan Gao 已提交
141
            "Warning: If want to use your own label_dict, please input legal path!\nOtherwise label_names will be empty!"
C
chenziheng 已提交
142
        )
T
Tingquan Gao 已提交
143
        return None
C
chenziheng 已提交
144
    else:
T
Tingquan Gao 已提交
145
        result = {}
C
chenziheng 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        for line in open(path, 'r'):
            partition = line.split('\n')[0].partition(' ')
            try:
                result[int(partition[0])] = str(partition[-1])
            except:
                result = {}
                break
    return result


def parse_args(mMain=True, add_help=True):
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    if mMain == True:

        # general params
        parser = argparse.ArgumentParser(add_help=add_help)
        parser.add_argument("--model_name", type=str)
        parser.add_argument("-i", "--image_file", type=str)
        parser.add_argument("--use_gpu", type=str2bool, default=False)

        # params for preprocess
        parser.add_argument("--resize_short", type=int, default=256)
        parser.add_argument("--resize", type=int, default=224)
        parser.add_argument("--normalize", type=str2bool, default=True)
        parser.add_argument("-b", "--batch_size", type=int, default=1)

        # params for predict
        parser.add_argument(
            "--model_file", type=str, default='')  ## inference.pdmodel
        parser.add_argument(
            "--params_file", type=str, default='')  ## inference.pdiparams
        parser.add_argument("--ir_optim", type=str2bool, default=True)
        parser.add_argument("--use_fp16", type=str2bool, default=False)
        parser.add_argument("--use_tensorrt", type=str2bool, default=False)
        parser.add_argument("--gpu_mem", type=int, default=8000)
        parser.add_argument("--enable_profile", type=str2bool, default=False)
        parser.add_argument("--top_k", type=int, default=1)
        parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
        parser.add_argument("--cpu_num_threads", type=int, default=10)

        # parameters for pre-label the images
        parser.add_argument("--label_name_path", type=str, default='')
        parser.add_argument(
            "--pre_label_image",
            type=str2bool,
            default=False,
            help="Whether to pre-label the images using the loaded weights")
        parser.add_argument("--pre_label_out_idr", type=str, default=None)

        return parser.parse_args()
    else:
        return argparse.Namespace(
            model_name='',
            image_file='',
            use_gpu=False,
            use_fp16=False,
            use_tensorrt=False,
T
Tingquan Gao 已提交
205
            is_preprocessed=False,
C
chenziheng 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
            resize_short=256,
            resize=224,
            normalize=True,
            batch_size=1,
            model_file='',
            params_file='',
            ir_optim=True,
            gpu_mem=8000,
            enable_profile=False,
            top_k=1,
            enable_mkldnn=False,
            cpu_num_threads=10,
            label_name_path='',
            pre_label_image=False,
            pre_label_out_idr=None)


class PaddleClas(object):
    print('Inference models that Paddle provides are listed as follows:\n\n{}'.
          format(model_names), '\n')

    def __init__(self, **kwargs):
        process_params = parse_args(mMain=False, add_help=False)
        process_params.__dict__.update(**kwargs)

        if not os.path.exists(process_params.model_file):
            if process_params.model_name is None:
                raise Exception(
                    'Please input model name that you want to use!')
            if process_params.model_name in model_names:
                url = 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar'.format(
                    process_params.model_name)

                if not os.path.exists(
                        os.path.join(BASE_INFERENCE_MODEL_DIR,
                                     process_params.model_name)):
                    os.makedirs(
                        os.path.join(BASE_INFERENCE_MODEL_DIR,
                                     process_params.model_name))
                download_path = os.path.join(BASE_INFERENCE_MODEL_DIR,
                                             process_params.model_name)
                maybe_download(model_storage_directory=download_path, url=url)
                process_params.model_file = os.path.join(download_path,
                                                         'inference.pdmodel')
                process_params.params_file = os.path.join(
                    download_path, 'inference.pdiparams')
                process_params.label_name_path = os.path.join(
                    __dir__, 'ppcls/utils/imagenet1k_label_list.txt')
            else:
                raise Exception(
                    'If you want to use your own model, Please input model_file as model path!'
                )
        else:
            print('Using user-specified model and params!')

        print("process params are as follows: \n{}".format(process_params))
        self.label_name_dict = load_label_name_dict(
            process_params.label_name_path)

        self.args = process_params
T
Tingquan Gao 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        self.predictor = Predictor(process_params)

    def postprocess(self, output):
        output = output.flatten()
        classes = np.argpartition(output, -self.args.top_k)[-self.args.top_k:]
        class_ids = classes[np.argsort(-output[classes])]
        scores = output[class_ids]
        label_names = [self.label_name_dict[c]
                       for c in class_ids] if self.label_name_dict else []
        return {
            "class_ids": class_ids,
            "scores": scores,
            "label_names": label_names
        }

    def predict(self, input_data):
C
chenziheng 已提交
282 283 284
        """
        predict label of img with paddleclas
        Args:
T
Tingquan Gao 已提交
285 286 287
            input_data(string, NumPy.ndarray): image to be classified, support:
                string: local path of image file, internet URL, directory containing series of images;
                NumPy.ndarray: preprocessed image data that has 3 channels and accords with [C, H, W], or raw image data that has 3 channels and accords with [H, W, C]
C
chenziheng 已提交
288
        Returns:
T
Tingquan Gao 已提交
289
            dict: {image_name: "", class_id: [], scores: [], label_names: []},if label name path == None,label_names will be empty.
C
chenziheng 已提交
290
        """
T
Tingquan Gao 已提交
291 292 293 294 295 296 297 298 299 300 301
        if isinstance(input_data, np.ndarray):
            if not self.args.is_preprocessed:
                input_data = input_data[:, :, ::-1]
                input_data = preprocess(input_data, self.args)
            input_data = np.expand_dims(input_data, axis=0)
            batch_outputs = self.predictor.predict(input_data)
            result = {"filename": "image"}
            result.update(self.postprocess(batch_outputs[0]))
            return result
        elif isinstance(input_data, str):
            input_path = input_data
C
chenziheng 已提交
302
            # download internet image
T
Tingquan Gao 已提交
303
            if input_path.startswith('http'):
C
chenziheng 已提交
304 305
                if not os.path.exists(BASE_IMAGES_DIR):
                    os.makedirs(BASE_IMAGES_DIR)
T
Tingquan Gao 已提交
306 307
                file_path = os.path.join(BASE_IMAGES_DIR, 'tmp.jpg')
                download_with_progressbar(input_path, file_path)
C
chenziheng 已提交
308
                print("Current using image from Internet:{}, renamed as: {}".
T
Tingquan Gao 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
                      format(input_path, file_path))
                input_path = file_path
            image_list = get_image_list(input_path)

            total_result = []
            batch_input_list = []
            img_path_list = []
            cnt = 0
            for idx, img_path in enumerate(image_list):
                img = cv2.imread(img_path)
                if img is None:
                    print(
                        "Warning: Image file failed to read and has been skipped. The path: {}".
                        format(img_path))
                    continue
                else:
                    img = img[:, :, ::-1]
                    data = preprocess(img, self.args)
                    batch_input_list.append(data)
                    img_path_list.append(img_path)
                    cnt += 1

                if cnt % self.args.batch_size == 0 or (idx + 1
                                                       ) == len(image_list):
                    batch_outputs = self.predictor.predict(
                        np.array(batch_input_list))
                    for number, output in enumerate(batch_outputs):
                        result = {"filename": img_path_list[number]}
                        result.update(self.postprocess(output))

                        result_str = "top-{} result: {}".format(
                            self.args.top_k, result)
                        print(result_str)

                        total_result.append(result)
                        if self.args.pre_label_image:
                            save_prelabel_results(result["class_ids"][0],
                                                  img_path_list[number],
                                                  self.args.pre_label_out_idr)
                    batch_input_list = []
                    img_path_list = []
            return total_result
C
chenziheng 已提交
351
        else:
T
Tingquan Gao 已提交
352 353 354 355
            print(
                "Error: Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            )
            return []
C
chenziheng 已提交
356 357 358 359 360 361 362


def main():
    # for cmd
    args = parse_args(mMain=True)
    clas_engine = PaddleClas(**(args.__dict__))
    print('{}{}{}'.format('*' * 10, args.image_file, '*' * 10))
T
Tingquan Gao 已提交
363 364 365
    total_result = clas_engine.predict(args.image_file)

    print("Predict complete!")
C
chenziheng 已提交
366 367 368 369


if __name__ == '__main__':
    main()