quick_start_en.md 6.4 KB
Newer Older
1 2
# Trial in 30mins

3
Based on the flowers102 dataset, it takes only 30 mins to experience PaddleClas, include training varieties of backbone and pretrained model, SSLD distillation, and multiple data augmentation, Please refer to [Installation](install_en.md) to install at first.
4 5 6 7


## Preparation

littletomatodonkey's avatar
fix doc  
littletomatodonkey 已提交
8
* Enter insatallation dir.
9 10 11 12 13

```
cd path_to_PaddleClas
```

14
* Enter `dataset/flowers102`, download and decompress flowers102 dataset.
15 16 17

```shell
cd dataset/flowers102
18
# If you want to download from the brower, you can copy the link, visit it
littletomatodonkey's avatar
fix doc  
littletomatodonkey 已提交
19
# in the browser, download and then decommpress.
20 21
wget https://paddle-imagenet-models-name.bj.bcebos.com/data/flowers102.zip
unzip flowers102.zip
22 23
```

24
* Return `PaddleClas` dir
25 26 27 28 29 30 31 32 33

```
cd ../../
```

## Environment

### Download pretrained model

littletomatodonkey's avatar
littletomatodonkey 已提交
34
You can use the following commands to downdload the pretrained models.
35 36

```bash
littletomatodonkey's avatar
littletomatodonkey 已提交
37 38
mkdir pretrained
cd pretrained
39 40 41 42
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_pretrained.pdparams

littletomatodonkey's avatar
littletomatodonkey 已提交
43
cd ../
44 45
```

46
**Note**: If you want to download the pretrained models on Windows environment, you can copy the links to the browser and download.
littletomatodonkey's avatar
littletomatodonkey 已提交
47

48

littletomatodonkey's avatar
littletomatodonkey 已提交
49
## Training
50

L
littletomatodonkey 已提交
51
* All experiments are running on the NVIDIA® Tesla® V100 single card.
littletomatodonkey's avatar
fix doc  
littletomatodonkey 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64
* First of all, use the following command to set visible device.

If you use mac or linux, you can use the following command:

```shell
export CUDA_VISIBLE_DEVICES=0
```

* If you use windows, you can use the following command.

```shell
set CUDA_VISIBLE_DEVICES=0
```
65

66 67 68
* If you want to train on cpu device, you can modify the field `use_gpu: True` in the config file to `use_gpu: False`, or you can append `-o use_gpu=False` in the training command, which means override the value of `use_gpu` as False.


69 70 71 72 73
### Train from scratch

* Train ResNet50_vd

```shell
74
python3 tools/train.py -c ./configs/quick_start/ResNet50_vd.yaml
75 76
```

77 78 79 80 81 82 83 84
If you want to train on cpu device, the command is as follows.

```shell
python3 tools/train.py -c ./configs/quick_start/ResNet50_vd.yaml -o use_gpu=False
```

Similarly, for the following commands, if you want to train on cpu device, you can append `-o use_gpu=False` in the command.

B
Bin Lu 已提交
85
The validation `Top1 Acc` curve is shown below.
86 87 88 89 90 91

![](../../images/quick_start/r50_vd_acc.png)


### Finetune - ResNet50_vd pretrained model (Acc 79.12\%)

littletomatodonkey's avatar
fix doc  
littletomatodonkey 已提交
92
* Finetune ResNet50_vd model pretrained on the 1000-class Imagenet dataset
93 94

```shell
95
python3 tools/train.py -c ./configs/quick_start/ResNet50_vd_finetune.yaml
96 97 98 99 100 101 102 103 104
```

The validation `Top1 Acc` curve is shown below

![](../../images/quick_start/r50_vd_pretrained_acc.png)

Compare with training from scratch, it improve by 65\% to 94.02\%


105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
You can use the trained model to infer the result of image `docs/images/quick_start/flowers102/image_06739.jpg`. The command is as follows.


```shell
python3 tools/infer/infer.py \
    -i docs/images/quick_start/flowers102/image_06739.jpg \
    --model=ResNet50_vd \
    --pretrained_model="output/ResNet50_vd/best_model/ppcls" \
    --class_num=102
```

The output is as follows. Top-5 class ids and their scores are printed.

```
Current image file: docs/images/quick_start/flowers102/image_06739.jpg
    top1, class id: 0, probability: 0.5129
    top2, class id: 50, probability: 0.0671
    top3, class id: 18, probability: 0.0377
    top4, class id: 82, probability: 0.0238
    top5, class id: 54, probability: 0.0231
```

* Note: Results are different for different models, so you might get different results for the command.


130 131 132 133 134 135 136 137
### SSLD finetune - ResNet50_vd_ssld pretrained model (Acc 82.39\%)

Note: when finetuning model, which has been trained by SSLD, please use smaller learning rate in the middle of net.

```yaml
ARCHITECTURE:
    name: 'ResNet50_vd'
    params:
L
littletomatodonkey 已提交
138
        lr_mult_list: [0.5, 0.5, 0.6, 0.6, 0.8]
139 140 141 142 143 144
pretrained_model: "./pretrained/ResNet50_vd_ssld_pretrained"
```

Tringing script

```shell
145
python3 tools/train.py -c ./configs/quick_start/ResNet50_vd_ssld_finetune.yaml
146 147
```

littletomatodonkey's avatar
fix doc  
littletomatodonkey 已提交
148
Compare with finetune on the 79.12% pretrained model, it improve by 0.98\% to 95\%.
149 150 151 152 153 154 155


### More architecture - MobileNetV3

Training script

```shell
156
python3 tools/train.py -c ./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml
157 158 159 160 161 162 163 164 165 166 167 168
```

Compare with ResNet50_vd pretrained model, it decrease by 5% to 90%. Different architecture generates different performance, actually it is a task-oriented decision to apply the best performance model, should consider the inference time, storage, heterogeneous device, etc.


### RandomErasing

Data augmentation works when training data is small.

Training script

```shell
169
python3 tools/train.py -c ./configs/quick_start/ResNet50_vd_ssld_random_erasing_finetune.yaml
170 171 172 173 174 175 176 177 178 179 180 181
```

It improves by 1.27\% to 96.27\%

* Save ResNet50_vd pretrained model to experience next chapter.

```shell
cp -r output/ResNet50_vd/19/  ./pretrained/flowers102_R50_vd_final/
```

### Distillation

182
* Use `extra_list.txt` as unlabeled data, Note:
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    * Samples in the `extra_list.txt` and `val_list.txt` don't have intersection
    * Because of in the source code, label information is unused, This is still unlabeled distillation
    * Teacher model use the pretrained_model trained on the flowers102 dataset, and student model use the MobileNetV3_large_x1_0 pretrained model(Acc 75.32\%) trained on the ImageNet1K dataset


```yaml
total_images: 7169
ARCHITECTURE:
    name: 'ResNet50_vd_distill_MobileNetV3_large_x1_0'
pretrained_model:
    - "./pretrained/flowers102_R50_vd_final/ppcls"
    - "./pretrained/MobileNetV3_large_x1_0_pretrained/”
TRAIN:
    file_list: "./dataset/flowers102/train_extra_list.txt"
```

Final training script

```shell
202
python3 tools/train.py -c ./configs/quick_start/R50_vd_distill_MV3_large_x1_0.yaml
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
```

It significantly imporve by 6.47% to 96.47% with more unlabeled data and teacher model.

### All accuracy


|Configuration | Top1 Acc |
|- |:-: |
| ResNet50_vd.yaml | 0.2735 |
| MobileNetV3_large_x1_0_finetune.yaml | 0.9000 |
| ResNet50_vd_finetune.yaml | 0.9402 |
| ResNet50_vd_ssld_finetune.yaml | 0.9500 |
| ResNet50_vd_ssld_random_erasing_finetune.yaml | 0.9627 |
| R50_vd_distill_MV3_large_x1_0.yaml | 0.9647 |


The whole accuracy curves are shown below


![](../../images/quick_start/all_acc.png)



* **NOTE**: As flowers102 is a small dataset, validatation accuracy maybe float 1%.

229
* Please refer to [Getting_started](./getting_started_en.md) for more details