quick_start_en.md 5.8 KB
Newer Older
1 2
# Trial in 30mins

3
Based on the flowers102 dataset, it takes only 30 mins to experience PaddleClas, include training varieties of backbone and pretrained model, SSLD distillation, and multiple data augmentation, Please refer to [Installation](install_en.md) to install at first.
4 5 6 7 8 9 10 11 12 13


## Preparation

* enter insatallation dir

```
cd path_to_PaddleClas
```

14
* Enter `dataset/flowers102`, download and decompress flowers102 dataset.
15 16 17

```shell
cd dataset/flowers102
18 19 20 21
# If you want to download from the brower, you can copy the link, visit it
# in the browser, download and then commpress.
wget https://paddle-imagenet-models-name.bj.bcebos.com/data/flowers102.zip
unzip flowers102.zip
22 23
```

24
* Return `PaddleClas` dir
25 26 27 28 29 30 31 32 33

```
cd ../../
```

## Environment

### Download pretrained model

littletomatodonkey's avatar
littletomatodonkey 已提交
34
You can use the following commands to downdload the pretrained models.
35 36

```bash
littletomatodonkey's avatar
littletomatodonkey 已提交
37 38
mkdir pretrained
cd pretrained
39 40 41 42
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_pretrained.pdparams

littletomatodonkey's avatar
littletomatodonkey 已提交
43
cd ../
44 45
```

46
**Note**: If you want to download the pretrained models on Windows environment, you can copy the links to the browser and download.
littletomatodonkey's avatar
littletomatodonkey 已提交
47

48

littletomatodonkey's avatar
littletomatodonkey 已提交
49
## Training
50

L
littletomatodonkey 已提交
51
* All experiments are running on the NVIDIA® Tesla® V100 single card.
52 53 54 55 56 57 58

### Train from scratch

* Train ResNet50_vd

```shell
export CUDA_VISIBLE_DEVICES=0
59
python3 tools/train.py -c ./configs/quick_start/ResNet50_vd.yaml
60 61
```

B
Bin Lu 已提交
62
The validation `Top1 Acc` curve is shown below.
63 64 65 66 67 68 69 70 71 72

![](../../images/quick_start/r50_vd_acc.png)


### Finetune - ResNet50_vd pretrained model (Acc 79.12\%)

* finetune ResNet50_vd_ model pretrained on the 1000-class Imagenet dataset

```shell
export CUDA_VISIBLE_DEVICES=0
73
python3 tools/train.py -c ./configs/quick_start/ResNet50_vd_finetune.yaml
74 75 76 77 78 79 80 81 82
```

The validation `Top1 Acc` curve is shown below

![](../../images/quick_start/r50_vd_pretrained_acc.png)

Compare with training from scratch, it improve by 65\% to 94.02\%


83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
You can use the trained model to infer the result of image `docs/images/quick_start/flowers102/image_06739.jpg`. The command is as follows.


```shell
python3 tools/infer/infer.py \
    -i docs/images/quick_start/flowers102/image_06739.jpg \
    --model=ResNet50_vd \
    --pretrained_model="output/ResNet50_vd/best_model/ppcls" \
    --class_num=102
```

The output is as follows. Top-5 class ids and their scores are printed.

```
Current image file: docs/images/quick_start/flowers102/image_06739.jpg
    top1, class id: 0, probability: 0.5129
    top2, class id: 50, probability: 0.0671
    top3, class id: 18, probability: 0.0377
    top4, class id: 82, probability: 0.0238
    top5, class id: 54, probability: 0.0231
```

* Note: Results are different for different models, so you might get different results for the command.


108 109 110 111 112 113 114 115
### SSLD finetune - ResNet50_vd_ssld pretrained model (Acc 82.39\%)

Note: when finetuning model, which has been trained by SSLD, please use smaller learning rate in the middle of net.

```yaml
ARCHITECTURE:
    name: 'ResNet50_vd'
    params:
L
littletomatodonkey 已提交
116
        lr_mult_list: [0.5, 0.5, 0.6, 0.6, 0.8]
117 118 119 120 121 122 123
pretrained_model: "./pretrained/ResNet50_vd_ssld_pretrained"
```

Tringing script

```shell
export CUDA_VISIBLE_DEVICES=0
124
python3 tools/train.py -c ./configs/quick_start/ResNet50_vd_ssld_finetune.yaml
125 126 127 128 129 130 131 132 133 134 135
```

Compare with finetune on the 79.12% pretrained model, it improve by 0.9% to 95%.


### More architecture - MobileNetV3

Training script

```shell
export CUDA_VISIBLE_DEVICES=0
136
python3 tools/train.py -c ./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml
137 138 139 140 141 142 143 144 145 146 147 148 149
```

Compare with ResNet50_vd pretrained model, it decrease by 5% to 90%. Different architecture generates different performance, actually it is a task-oriented decision to apply the best performance model, should consider the inference time, storage, heterogeneous device, etc.


### RandomErasing

Data augmentation works when training data is small.

Training script

```shell
export CUDA_VISIBLE_DEVICES=0
150
python3 tools/train.py -c ./configs/quick_start/ResNet50_vd_ssld_random_erasing_finetune.yaml
151 152 153 154 155 156 157 158 159 160 161 162
```

It improves by 1.27\% to 96.27\%

* Save ResNet50_vd pretrained model to experience next chapter.

```shell
cp -r output/ResNet50_vd/19/  ./pretrained/flowers102_R50_vd_final/
```

### Distillation

163
* Use `extra_list.txt` as unlabeled data, Note:
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    * Samples in the `extra_list.txt` and `val_list.txt` don't have intersection
    * Because of in the source code, label information is unused, This is still unlabeled distillation
    * Teacher model use the pretrained_model trained on the flowers102 dataset, and student model use the MobileNetV3_large_x1_0 pretrained model(Acc 75.32\%) trained on the ImageNet1K dataset


```yaml
total_images: 7169
ARCHITECTURE:
    name: 'ResNet50_vd_distill_MobileNetV3_large_x1_0'
pretrained_model:
    - "./pretrained/flowers102_R50_vd_final/ppcls"
    - "./pretrained/MobileNetV3_large_x1_0_pretrained/”
TRAIN:
    file_list: "./dataset/flowers102/train_extra_list.txt"
```

Final training script

```shell
export CUDA_VISIBLE_DEVICES=0
184
python3 tools/train.py -c ./configs/quick_start/R50_vd_distill_MV3_large_x1_0.yaml
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
```

It significantly imporve by 6.47% to 96.47% with more unlabeled data and teacher model.

### All accuracy


|Configuration | Top1 Acc |
|- |:-: |
| ResNet50_vd.yaml | 0.2735 |
| MobileNetV3_large_x1_0_finetune.yaml | 0.9000 |
| ResNet50_vd_finetune.yaml | 0.9402 |
| ResNet50_vd_ssld_finetune.yaml | 0.9500 |
| ResNet50_vd_ssld_random_erasing_finetune.yaml | 0.9627 |
| R50_vd_distill_MV3_large_x1_0.yaml | 0.9647 |


The whole accuracy curves are shown below


![](../../images/quick_start/all_acc.png)



* **NOTE**: As flowers102 is a small dataset, validatation accuracy maybe float 1%.

211
* Please refer to [Getting_started](./getting_started_en.md) for more details