test_hubserving.py 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))

T
Tingquan Gao 已提交
21
from tools.infer.utils import parse_args, get_image_list, preprocess, np_to_b64
22
from ppcls.utils import logger
T
Tingquan Gao 已提交
23
import numpy as np
24 25 26 27 28 29 30
import cv2
import time
import requests
import json
import base64


T
Tingquan Gao 已提交
31 32
def main(args):
    image_path_list = get_image_list(args.image_file)
33
    headers = {"Content-type": "application/json"}
T
Tingquan Gao 已提交
34

35
    cnt = 0
T
Tingquan Gao 已提交
36 37 38
    predict_time = 0
    all_score = 0.0
    start_time = time.time()
39

T
Tingquan Gao 已提交
40 41 42 43 44
    batch_input_list = []
    img_name_list = []
    cnt = 0
    for idx, img_path in enumerate(image_path_list):
        img = cv2.imread(img_path)
45
        if img is None:
T
Tingquan Gao 已提交
46 47 48
            logger.warning(
                "Image file failed to read and has been skipped. The path: {}".
                format(img_path))
49
            continue
T
Tingquan Gao 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        else:
            img = img[:, :, ::-1]
            data = preprocess(img, args)
            batch_input_list.append(data)
            img_name = img_path.split('/')[-1]
            img_name_list.append(img_name)
            cnt += 1
        if cnt % args.batch_size == 0 or (idx + 1) == len(image_path_list):
            batch_input = np.array(batch_input_list)
            b64str, revert_shape = np_to_b64(batch_input)
            data = {
                "images": b64str,
                "revert_params": {
                    "shape": revert_shape,
                    "dtype": str(batch_input.dtype)
                },
                "top_k": args.top_k
            }
            try:
                r = requests.post(
                    url=args.server_url,
                    headers=headers,
                    data=json.dumps(data))
                r.raise_for_status
                if r.json()["status"] != "000":
                    msg = r.json()["msg"]
                    raise Exception(msg)
            except Exception as e:
                logger.error("{}, in file(s): {} etc.".format(e, img_name_list[
                    0]))
                continue
            else:
                results = r.json()["results"]
                batch_result_list = results["prediction"]
                elapse = results["elapse"]

                cnt += len(batch_result_list)
                predict_time += elapse

                for number, result_list in enumerate(batch_result_list):
                    all_score += result_list[0]["score"]
                    result_str = ", ".join([
                        "{}: {:.2f}".format(r["cls_id"], r["score"])
                        for r in result_list
                    ])
                    logger.info("File:{}, The top-{} result(s): {}".format(
                        img_name_list[number], args.top_k, result_str))

            finally:
                batch_input_list = []
                img_name_list = []

    total_time = time.time() - start_time
    logger.info("The average time of prediction cost: {:.3f} s/image".format(
        predict_time / cnt))
    logger.info("The average time cost: {:.3f} s/image".format(total_time /
                                                               cnt))
    logger.info("The average top-1 score: {:.3f}".format(all_score / cnt))
108 109 110


if __name__ == '__main__':
T
Tingquan Gao 已提交
111 112
    args = parse_args()
    main(args)