__init__.py 5.8 KB
Newer Older
D
dongshuilong 已提交
1
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

L
littletomatodonkey 已提交
15 16 17
import copy
import importlib

18
import paddle
L
littletomatodonkey 已提交
19
import paddle.nn as nn
A
Aurelius84 已提交
20 21
from paddle.jit import to_static
from paddle.static import InputSpec
L
littletomatodonkey 已提交
22

D
dongshuilong 已提交
23
from . import backbone, gears
W
weishengyu 已提交
24
from .backbone import *
D
dongshuilong 已提交
25
from .gears import build_gear
W
WuHaobo 已提交
26
from .utils import *
W
weishengyu 已提交
27
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
A
Aurelius84 已提交
28
from ppcls.utils import logger
29
from ppcls.utils.save_load import load_dygraph_pretrain
W
weishengyu 已提交
30
from ppcls.arch.slim import prune_model, quantize_model
wc晨曦's avatar
wc晨曦 已提交
31
from ppcls.arch.distill.afd_attention import LinearTransformStudent, LinearTransformTeacher
W
weishengyu 已提交
32

wc晨曦's avatar
wc晨曦 已提交
33
__all__ = ["build_model", "RecModel", "DistillationModel", "AttentionModel"]
B
Bin Lu 已提交
34

L
littletomatodonkey 已提交
35

littletomatodonkey's avatar
littletomatodonkey 已提交
36
def build_model(config, mode="train"):
W
weishengyu 已提交
37 38
    arch_config = copy.deepcopy(config["Arch"])
    model_type = arch_config.pop("name")
C
cuicheng01 已提交
39
    use_sync_bn = arch_config.pop("use_sync_bn", False)
L
littletomatodonkey 已提交
40
    mod = importlib.import_module(__name__)
W
weishengyu 已提交
41
    arch = getattr(mod, model_type)(**arch_config)
C
cuicheng01 已提交
42 43
    if use_sync_bn:
        arch = nn.SyncBatchNorm.convert_sync_batchnorm(arch)
C
cuicheng01 已提交
44

W
weishengyu 已提交
45 46
    if isinstance(arch, TheseusLayer):
        prune_model(config, arch)
littletomatodonkey's avatar
littletomatodonkey 已提交
47
        quantize_model(config, arch, mode)
48 49 50 51 52 53 54 55 56

    logger.info("The FLOPs and Params of Arch:")
    try:
        flops = paddle.flops(arch, [1, *config["Global"]["image_shape"]])
    except Exception as e:
        logger.warning(
            f"An error occurred when calculating FLOPs and Params of Arch. Please check the Global.image_shape in config. The details of error is: {e}"
        )

L
littletomatodonkey 已提交
57 58 59
    return arch


A
Aurelius84 已提交
60 61 62 63 64 65 66
def apply_to_static(config, model):
    support_to_static = config['Global'].get('to_static', False)

    if support_to_static:
        specs = None
        if 'image_shape' in config['Global']:
            specs = [InputSpec([None] + config['Global']['image_shape'])]
67
            specs[0].stop_gradient = True
A
Aurelius84 已提交
68 69 70 71 72 73
        model = to_static(model, input_spec=specs)
        logger.info("Successfully to apply @to_static with specs: {}".format(
            specs))
    return model


W
weishengyu 已提交
74
class RecModel(TheseusLayer):
L
littletomatodonkey 已提交
75 76 77 78
    def __init__(self, **config):
        super().__init__()
        backbone_config = config["Backbone"]
        backbone_name = backbone_config.pop("name")
D
dongshuilong 已提交
79
        self.backbone = eval(backbone_name)(**backbone_config)
D
dongshuilong 已提交
80
        if "BackboneStopLayer" in config:
D
dongshuilong 已提交
81 82
            backbone_stop_layer = config["BackboneStopLayer"]["name"]
            self.backbone.stop_after(backbone_stop_layer)
D
dongshuilong 已提交
83

D
dongshuilong 已提交
84 85
        if "Neck" in config:
            self.neck = build_gear(config["Neck"])
L
littletomatodonkey 已提交
86 87
        else:
            self.neck = None
D
dongshuilong 已提交
88

D
dongshuilong 已提交
89 90 91 92
        if "Head" in config:
            self.head = build_gear(config["Head"])
        else:
            self.head = None
L
littletomatodonkey 已提交
93

W
weishengyu 已提交
94
    def forward(self, x, label=None):
95
        out = dict()
D
dongshuilong 已提交
96
        x = self.backbone(x)
97
        out["backbone"] = x
L
littletomatodonkey 已提交
98
        if self.neck is not None:
D
dongshuilong 已提交
99
            x = self.neck(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
100
            out["neck"] = x
101
        out["features"] = x
D
dongshuilong 已提交
102
        if self.head is not None:
D
dongshuilong 已提交
103
            y = self.head(x, label)
littletomatodonkey's avatar
littletomatodonkey 已提交
104
            out["logits"] = y
105
        return out
106 107 108 109 110 111


class DistillationModel(nn.Layer):
    def __init__(self,
                 models=None,
                 pretrained_list=None,
112 113
                 freeze_params_list=None,
                 **kargs):
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        super().__init__()
        assert isinstance(models, list)
        self.model_list = []
        self.model_name_list = []
        if pretrained_list is not None:
            assert len(pretrained_list) == len(models)

        if freeze_params_list is None:
            freeze_params_list = [False] * len(models)
        assert len(freeze_params_list) == len(models)
        for idx, model_config in enumerate(models):
            assert len(model_config) == 1
            key = list(model_config.keys())[0]
            model_config = model_config[key]
            model_name = model_config.pop("name")
            model = eval(model_name)(**model_config)

            if freeze_params_list[idx]:
                for param in model.parameters():
                    param.trainable = False
            self.model_list.append(self.add_sublayer(key, model))
            self.model_name_list.append(key)

        if pretrained_list is not None:
            for idx, pretrained in enumerate(pretrained_list):
                if pretrained is not None:
                    load_dygraph_pretrain(
                        self.model_name_list[idx], path=pretrained)

    def forward(self, x, label=None):
        result_dict = dict()
        for idx, model_name in enumerate(self.model_name_list):
            if label is None:
                result_dict[model_name] = self.model_list[idx](x)
            else:
149
                result_dict[model_name] = self.model_list[idx](x, label)
150
        return result_dict
wc晨曦's avatar
wc晨曦 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171


class AttentionModel(DistillationModel):
    def __init__(self,
                 models=None,
                 pretrained_list=None,
                 freeze_params_list=None,
                 **kargs):
        super().__init__(models, pretrained_list, freeze_params_list, **kargs)

    def forward(self, x, label=None):
        result_dict = dict()
        out = x
        for idx, model_name in enumerate(self.model_name_list):
            if label is None:
                out = self.model_list[idx](out)
                result_dict.update(out)
            else:
                out = self.model_list[idx](out, label)
                result_dict.update(out)
        return result_dict