resnet_vc.py 9.8 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14

G
gaotingquan 已提交
15 16
# reference: https://arxiv.org/abs/1812.01187

W
WuHaobo 已提交
17 18 19 20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import numpy as np
W
WuHaobo 已提交
22
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
23 24
from paddle import ParamAttr
import paddle.nn as nn
25 26 27
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
littletomatodonkey 已提交
28
from paddle.nn.initializer import Uniform
W
WuHaobo 已提交
29

30
import math
W
WuHaobo 已提交
31

R
root 已提交
32
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
C
cuicheng01 已提交
33 34

MODEL_URLS = {
littletomatodonkey's avatar
littletomatodonkey 已提交
35 36 37
    "ResNet50_vc":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams",
}
C
cuicheng01 已提交
38 39

__all__ = list(MODEL_URLS.keys())
W
WuHaobo 已提交
40 41


littletomatodonkey's avatar
littletomatodonkey 已提交
42
class ConvBNLayer(nn.Layer):
43 44 45 46 47 48 49 50 51
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()
W
WuHaobo 已提交
52

53
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
54 55 56
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
W
WuHaobo 已提交
57 58 59
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
60
            weight_attr=ParamAttr(name=name + "_weights"),
61
            bias_attr=False)
W
WuHaobo 已提交
62 63 64 65
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
66 67
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
68 69 70 71
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
72
            moving_variance_name=bn_name + '_variance')
W
WuHaobo 已提交
73

74 75 76 77 78 79
    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
80
class BottleneckBlock(nn.Layer):
81 82 83 84 85 86 87
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
        super(BottleneckBlock, self).__init__()
W
WuHaobo 已提交
88

89 90
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
91 92 93 94
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
95 96
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
97 98 99 100 101
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
102 103
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
104 105 106 107 108
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

131 132
        y = paddle.add(x=short, y=conv2)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
133
        return y
134 135


littletomatodonkey's avatar
littletomatodonkey 已提交
136
class BasicBlock(nn.Layer):
137 138 139 140 141 142
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
143
        super(BasicBlock, self).__init__()
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
177 178
        y = paddle.add(x=short, y=conv1)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
179
        return y
180 181


littletomatodonkey's avatar
littletomatodonkey 已提交
182
class ResNet_vc(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
183
    def __init__(self, layers=50, class_num=1000):
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        super(ResNet_vc, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]
W
WuHaobo 已提交
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        self.conv1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_3")

226
        self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
256
                    basic_block = self.add_sublayer(
257
                        'bb_%d_%d' % (block, i),
littletomatodonkey's avatar
littletomatodonkey 已提交
258
                        BasicBlock(
259 260 261 262 263 264
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
265
                    self.block_list.append(basic_block)
266 267
                    shortcut = True

268
        self.pool2d_avg = AdaptiveAvgPool2D(1)
269 270 271 272 273 274 275

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
littletomatodonkey's avatar
littletomatodonkey 已提交
276
            class_num,
littletomatodonkey's avatar
littletomatodonkey 已提交
277 278
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
279 280 281 282 283 284 285 286 287 288
            bias_attr=ParamAttr(name="fc_0.b_0"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
289
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
290 291 292
        y = self.out(y)
        return y

littletomatodonkey's avatar
littletomatodonkey 已提交
293

C
cuicheng01 已提交
294 295 296 297 298 299 300 301 302 303 304 305
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )

littletomatodonkey's avatar
littletomatodonkey 已提交
306

C
cuicheng01 已提交
307 308
def ResNet50_vc(pretrained=False, use_ssld=False, **kwargs):
    model = ResNet_vc(layers=50, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
309 310
    _load_pretrained(
        pretrained, model, MODEL_URLS["ResNet50_vc"], use_ssld=use_ssld)
W
WuHaobo 已提交
311
    return model