paddleclas.py 20.9 KB
Newer Older
T
Tingquan Gao 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
C
chenziheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
__dir__ = os.path.dirname(__file__)
T
Tingquan Gao 已提交
18 19 20
sys.path.append(os.path.join(__dir__, ""))
sys.path.append(os.path.join(__dir__, "deploy"))

21
from typing import Union, Generator
T
Tingquan Gao 已提交
22 23
import argparse
import shutil
T
Tingquan Gao 已提交
24
import textwrap
T
Tingquan Gao 已提交
25 26 27 28
import tarfile
import requests
import warnings
from functools import partial
T
Tingquan Gao 已提交
29
from difflib import SequenceMatcher
C
chenziheng 已提交
30 31 32 33

import cv2
import numpy as np
from tqdm import tqdm
T
Tingquan Gao 已提交
34 35 36 37 38 39 40 41 42
from prettytable import PrettyTable

from deploy.python.predict_cls import ClsPredictor
from deploy.utils.get_image_list import get_image_list
from deploy.utils import config

from ppcls.arch.backbone import *

__all__ = ["PaddleClas"]
T
Tingquan Gao 已提交
43

C
chenziheng 已提交
44
BASE_DIR = os.path.expanduser("~/.paddleclas/")
T
Tingquan Gao 已提交
45 46 47 48
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model")
BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images")
BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar"
MODEL_SERIES = {
T
Tingquan Gao 已提交
49 50 51
    "AlexNet": ["AlexNet"],
    "DarkNet": ["DarkNet53"],
    "DeiT": [
T
Tingquan Gao 已提交
52 53 54 55
        "DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384",
        "DeiT_base_patch16_224", "DeiT_base_patch16_384",
        "DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224",
        "DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224"
T
Tingquan Gao 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    ],
    "DenseNet": [
        "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
        "DenseNet264"
    ],
    "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
    "EfficientNet": [
        "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
        "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
        "EfficientNetB6", "EfficientNetB7"
    ],
    "GhostNet":
    ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
    "HRNet": [
        "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
        "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
        "HRNet_W48_C_ssld"
    ],
    "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
    "MobileNetV1": [
        "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
        "MobileNetV1", "MobileNetV1_ssld"
    ],
    "MobileNetV2": [
        "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
        "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
        "MobileNetV2_ssld"
    ],
    "MobileNetV3": [
        "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
        "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
        "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
        "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
        "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
        "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
    ],
    "RegNet": ["RegNetX_4GF"],
    "Res2Net": [
        "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
        "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
        "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
        "Res2Net200_vd_26w_4s_ssld"
    ],
    "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
    "ResNet": [
        "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
        "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
        "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
        "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
        "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
    ],
    "ResNeXt": [
        "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
        "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
        "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
        "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
        "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
        "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
        "ResNeXt152_vd_64x4d"
    ],
    "SENet": [
        "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
        "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
        "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
    ],
    "ShuffleNetV2": [
        "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
        "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
        "ShuffleNetV2_x2_0"
    ],
    "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
    "SwinTransformer": [
        "SwinTransformer_large_patch4_window7_224_22kto1k",
        "SwinTransformer_large_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window7_224_22kto1k",
        "SwinTransformer_base_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window12_384",
        "SwinTransformer_base_patch4_window7_224",
        "SwinTransformer_small_patch4_window7_224",
        "SwinTransformer_tiny_patch4_window7_224"
    ],
    "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
    "VisionTransformer": [
        "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
        "ViT_large_patch16_224", "ViT_large_patch16_384",
        "ViT_large_patch32_384", "ViT_small_patch16_224"
    ],
    "Xception": [
        "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
        "Xception71"
    ]
C
chenziheng 已提交
147 148 149
}


T
Tingquan Gao 已提交
150 151
class ImageTypeError(Exception):
    """ImageTypeError.
T
Tingquan Gao 已提交
152 153
    """

T
Tingquan Gao 已提交
154
    def __init__(self, message=""):
T
Tingquan Gao 已提交
155 156 157
        super().__init__(message)


T
Tingquan Gao 已提交
158 159 160 161 162 163 164 165
class InputModelError(Exception):
    """InputModelError.
    """

    def __init__(self, message=""):
        super().__init__(message)


T
Tingquan Gao 已提交
166 167 168 169 170 171 172 173 174
def init_config(model_name,
                inference_model_dir,
                use_gpu=True,
                batch_size=1,
                topk=5,
                **kwargs):
    imagenet1k_map_path = os.path.join(
        os.path.abspath(__dir__), "ppcls/utils/imagenet1k_label_list.txt")
    cfg = {
T
Tingquan Gao 已提交
175
        "Global": {
T
Tingquan Gao 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
            "infer_imgs": kwargs["infer_imgs"]
            if "infer_imgs" in kwargs else False,
            "model_name": model_name,
            "inference_model_dir": inference_model_dir,
            "batch_size": batch_size,
            "use_gpu": use_gpu,
            "enable_mkldnn": kwargs["enable_mkldnn"]
            if "enable_mkldnn" in kwargs else False,
            "cpu_num_threads": kwargs["cpu_num_threads"]
            if "cpu_num_threads" in kwargs else 1,
            "enable_benchmark": False,
            "use_fp16": kwargs["use_fp16"] if "use_fp16" in kwargs else False,
            "ir_optim": True,
            "use_tensorrt": kwargs["use_tensorrt"]
            if "use_tensorrt" in kwargs else False,
            "gpu_mem": kwargs["gpu_mem"] if "gpu_mem" in kwargs else 8000,
T
Tingquan Gao 已提交
192 193 194 195 196
            "enable_profile": False
        },
        "PreProcess": {
            "transform_ops": [{
                "ResizeImage": {
T
Tingquan Gao 已提交
197 198
                    "resize_short": kwargs["resize_short"]
                    if "resize_short" in kwargs else 256
T
Tingquan Gao 已提交
199 200 201
                }
            }, {
                "CropImage": {
T
Tingquan Gao 已提交
202 203
                    "size": kwargs["crop_size"]
                    if "crop_size" in kwargs else 224
T
Tingquan Gao 已提交
204 205 206 207 208 209
                }
            }, {
                "NormalizeImage": {
                    "scale": 0.00392157,
                    "mean": [0.485, 0.456, 0.406],
                    "std": [0.229, 0.224, 0.225],
T
Tingquan Gao 已提交
210
                    "order": ''
T
Tingquan Gao 已提交
211 212 213 214 215 216
                }
            }, {
                "ToCHWImage": None
            }]
        },
        "PostProcess": {
T
Tingquan Gao 已提交
217 218 219 220 221
            "main_indicator": "Topk",
            "Topk": {
                "topk": topk,
                "class_id_map_file": imagenet1k_map_path
            }
T
Tingquan Gao 已提交
222 223
        }
    }
T
Tingquan Gao 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    if "save_dir" in kwargs:
        if kwargs["save_dir"] is not None:
            cfg["PostProcess"]["SavePreLabel"] = {
                "save_dir": kwargs["save_dir"]
            }
    if "class_id_map_file" in kwargs:
        if kwargs["class_id_map_file"] is not None:
            cfg["PostProcess"]["Topk"]["class_id_map_file"] = kwargs[
                "class_id_map_file"]

    cfg = config.AttrDict(cfg)
    config.create_attr_dict(cfg)
    return cfg


def args_cfg():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--infer_imgs",
        type=str,
        required=True,
        help="The image(s) to be predicted.")
    parser.add_argument(
        "--model_name", type=str, help="The model name to be used.")
    parser.add_argument(
        "--inference_model_dir",
        type=str,
        help="The directory of model files. Valid when model_name not specifed."
    )
    parser.add_argument(
        "--use_gpu", type=str, default=True, help="Whether use GPU.")
    parser.add_argument("--gpu_mem", type=int, default=8000, help="")
    parser.add_argument(
        "--enable_mkldnn",
        type=str2bool,
        default=False,
        help="Whether use MKLDNN. Valid when use_gpu is False")
    parser.add_argument("--cpu_num_threads", type=int, default=1, help="")
    parser.add_argument(
        "--use_tensorrt", type=str2bool, default=False, help="")
    parser.add_argument("--use_fp16", type=str2bool, default=False, help="")
    parser.add_argument(
        "--batch_size", type=int, default=1, help="Batch size. Default by 1.")
    parser.add_argument(
        "--topk",
        type=int,
        default=5,
        help="Return topk score(s) and corresponding results. Default by 5.")
    parser.add_argument(
        "--class_id_map_file",
        type=str,
        help="The path of file that map class_id and label.")
    parser.add_argument(
        "--save_dir",
        type=str,
        help="The directory to save prediction results as pre-label.")
G
gaotingquan 已提交
283 284 285 286 287 288 289
    parser.add_argument(
        "--resize_short",
        type=int,
        default=256,
        help="Resize according to short size.")
    parser.add_argument(
        "--crop_size", type=int, default=224, help="Centor crop size.")
T
Tingquan Gao 已提交
290 291 292

    args = parser.parse_args()
    return vars(args)
T
Tingquan Gao 已提交
293 294


T
Tingquan Gao 已提交
295
def print_info():
T
Tingquan Gao 已提交
296 297 298
    """Print list of supported models in formatted.
    """
    table = PrettyTable(["Series", "Name"])
T
Tingquan Gao 已提交
299 300 301 302 303
    try:
        sz = os.get_terminal_size()
        width = sz.columns - 30 if sz.columns > 50 else 10
    except OSError:
        width = 100
T
Tingquan Gao 已提交
304 305
    for series in MODEL_SERIES:
        names = textwrap.fill("  ".join(MODEL_SERIES[series]), width=width)
T
Tingquan Gao 已提交
306
        table.add_row([series, names])
T
Tingquan Gao 已提交
307 308 309
    width = len(str(table).split("\n")[0])
    print("{}".format("-" * width))
    print("Models supported by PaddleClas".center(width))
T
Tingquan Gao 已提交
310
    print(table)
T
Tingquan Gao 已提交
311 312
    print("Powered by PaddlePaddle!".rjust(width))
    print("{}".format("-" * width))
T
Tingquan Gao 已提交
313 314 315


def get_model_names():
T
Tingquan Gao 已提交
316 317
    """Get the model names list.
    """
T
Tingquan Gao 已提交
318
    model_names = []
T
Tingquan Gao 已提交
319 320
    for series in MODEL_SERIES:
        model_names += (MODEL_SERIES[series])
T
Tingquan Gao 已提交
321 322 323
    return model_names


T
Tingquan Gao 已提交
324 325
def similar_architectures(name="", names=[], thresh=0.1, topk=10):
    """Find the most similar topk model names.
T
Tingquan Gao 已提交
326 327 328
    """
    scores = []
    for idx, n in enumerate(names):
T
Tingquan Gao 已提交
329
        if n.startswith("__"):
T
Tingquan Gao 已提交
330 331 332 333 334 335 336 337 338
            continue
        score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
        if score > thresh:
            scores.append((idx, score))
    scores.sort(key=lambda x: x[1], reverse=True)
    similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
    return similar_names


C
chenziheng 已提交
339
def download_with_progressbar(url, save_path):
T
Tingquan Gao 已提交
340 341 342 343
    """Download from url with progressbar.
    """
    if os.path.isfile(save_path):
        os.remove(save_path)
C
chenziheng 已提交
344
    response = requests.get(url, stream=True)
T
Tingquan Gao 已提交
345
    total_size_in_bytes = int(response.headers.get("content-length", 0))
C
chenziheng 已提交
346
    block_size = 1024  # 1 Kibibyte
T
Tingquan Gao 已提交
347 348
    progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
    with open(save_path, "wb") as file:
C
chenziheng 已提交
349 350 351 352
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
T
Tingquan Gao 已提交
353 354
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
            save_path):
T
Tingquan Gao 已提交
355
        raise Exception(
T
Tingquan Gao 已提交
356
            f"Something went wrong while downloading file from {url}")
C
chenziheng 已提交
357 358


T
Tingquan Gao 已提交
359
def check_model_file(model_name):
360
    """Check the model files exist and download and untar when no exist.
T
Tingquan Gao 已提交
361 362 363 364 365
    """
    storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                model_name)
    url = BASE_DOWNLOAD_URL.format(model_name)

C
chenziheng 已提交
366
    tar_file_name_list = [
T
Tingquan Gao 已提交
367
        "inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel"
C
chenziheng 已提交
368
    ]
T
Tingquan Gao 已提交
369 370 371 372 373 374 375
    model_file_path = storage_directory("inference.pdmodel")
    params_file_path = storage_directory("inference.pdiparams")
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        tmp_path = storage_directory(url.split("/")[-1])
        print(f"download {url} to {tmp_path}")
        os.makedirs(storage_directory(), exist_ok=True)
C
chenziheng 已提交
376
        download_with_progressbar(url, tmp_path)
T
Tingquan Gao 已提交
377
        with tarfile.open(tmp_path, "r") as tarObj:
C
chenziheng 已提交
378 379 380 381 382 383 384 385
            for member in tarObj.getmembers():
                filename = None
                for tar_file_name in tar_file_name_list:
                    if tar_file_name in member.name:
                        filename = tar_file_name
                if filename is None:
                    continue
                file = tarObj.extractfile(member)
T
Tingquan Gao 已提交
386
                with open(storage_directory(filename), "wb") as f:
C
chenziheng 已提交
387 388
                    f.write(file.read())
        os.remove(tmp_path)
T
Tingquan Gao 已提交
389 390 391 392 393
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        raise Exception(
            f"Something went wrong while praparing the model[{model_name}] files!"
        )
C
chenziheng 已提交
394

T
Tingquan Gao 已提交
395
    return storage_directory()
C
chenziheng 已提交
396

T
Tingquan Gao 已提交
397

C
chenziheng 已提交
398
class PaddleClas(object):
T
Tingquan Gao 已提交
399 400 401
    """PaddleClas.
    """

T
Tingquan Gao 已提交
402
    print_info()
C
chenziheng 已提交
403

T
Tingquan Gao 已提交
404 405 406
    def __init__(self,
                 model_name: str=None,
                 inference_model_dir: str=None,
T
Tingquan Gao 已提交
407 408 409 410
                 use_gpu: bool=True,
                 batch_size: int=1,
                 topk: int=5,
                 **kwargs):
T
Tingquan Gao 已提交
411
        """Init PaddleClas with config.
T
Tingquan Gao 已提交
412

T
Tingquan Gao 已提交
413
        Args:
414 415 416 417 418
            model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None.
            inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None.
            use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True.
            batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1.
            topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5.
T
Tingquan Gao 已提交
419 420
        """
        super().__init__()
T
Tingquan Gao 已提交
421 422
        self._config = init_config(model_name, inference_model_dir, use_gpu,
                                   batch_size, topk, **kwargs)
T
Tingquan Gao 已提交
423 424 425 426 427
        self._check_input_model()
        self.cls_predictor = ClsPredictor(self._config)

    def get_config(self):
        """Get the config.
C
chenziheng 已提交
428
        """
T
Tingquan Gao 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442
        return self._config

    def _check_input_model(self):
        """Check input model name or model files.
        """
        candidate_model_names = get_model_names()
        input_model_name = self._config.Global.get("model_name", None)
        inference_model_dir = self._config.Global.get("inference_model_dir",
                                                      None)
        if input_model_name is not None:
            similar_names = similar_architectures(input_model_name,
                                                  candidate_model_names)
            similar_names_str = ", ".join(similar_names)
            if input_model_name not in candidate_model_names:
T
Tingquan Gao 已提交
443
                err = f"{input_model_name} is not provided by PaddleClas. \nMaybe you want: [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!"
T
Tingquan Gao 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
                raise InputModelError(err)
            self._config.Global.inference_model_dir = check_model_file(
                input_model_name)
            return
        elif inference_model_dir is not None:
            model_file_path = os.path.join(inference_model_dir,
                                           "inference.pdmodel")
            params_file_path = os.path.join(inference_model_dir,
                                            "inference.pdiparams")
            if not os.path.isfile(model_file_path) or not os.path.isfile(
                    params_file_path):
                err = f"There is no model file or params file in this directory: {inference_model_dir}"
                raise InputModelError(err)
            return
        else:
T
Tingquan Gao 已提交
459
            err = f"Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)."
T
Tingquan Gao 已提交
460 461 462
            raise InputModelError(err)
        return

463 464
    def predict(self, input_data: Union[str, np.array],
                print_pred: bool=False) -> Generator[list, None, None]:
T
Tingquan Gao 已提交
465 466
        """Predict input_data.

C
chenziheng 已提交
467
        Args:
468 469 470 471
            input_data (Union[str, np.array]): 
                When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
                When the type is np.array, it is the image data whose channel order is RGB.
            print_pred (bool, optional): Whether print the prediction result. Defaults to False. Defaults to False.
T
Tingquan Gao 已提交
472 473 474 475 476

        Raises:
            ImageTypeError: Illegal input_data.

        Yields:
477 478 479 480
            Generator[list, None, None]: 
                The prediction result(s) of input_data by batch_size. For every one image, 
                prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names". 
                The format is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
C
chenziheng 已提交
481
        """
482

T
Tingquan Gao 已提交
483
        if isinstance(input_data, np.ndarray):
T
Tingquan Gao 已提交
484 485
            outputs = self.cls_predictor.predict(input_data)
            yield self.cls_predictor.postprocess(outputs)
T
Tingquan Gao 已提交
486
        elif isinstance(input_data, str):
T
Tingquan Gao 已提交
487
            if input_data.startswith("http") or input_data.startswith("https"):
T
Tingquan Gao 已提交
488 489 490 491 492 493 494 495 496 497 498 499
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
                input_data = image_save_path
                warnings.warn(
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
            image_list = get_image_list(input_data)

            batch_size = self._config.Global.get("batch_size", 1)
T
Tingquan Gao 已提交
500
            topk = self._config.PostProcess.get('topk', 1)
T
Tingquan Gao 已提交
501 502

            img_list = []
T
Tingquan Gao 已提交
503 504 505 506 507
            img_path_list = []
            cnt = 0
            for idx, img_path in enumerate(image_list):
                img = cv2.imread(img_path)
                if img is None:
T
Tingquan Gao 已提交
508 509 510
                    warnings.warn(
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
T
Tingquan Gao 已提交
511
                    continue
512
                img = img[:, :, ::-1]
T
Tingquan Gao 已提交
513 514 515 516 517 518
                img_list.append(img)
                img_path_list.append(img_path)
                cnt += 1

                if cnt % batch_size == 0 or (idx + 1) == len(image_list):
                    outputs = self.cls_predictor.predict(img_list)
T
Tingquan Gao 已提交
519 520 521
                    preds = self.cls_predictor.postprocess(outputs,
                                                           img_path_list)
                    if print_pred and preds:
G
gaotingquan 已提交
522 523
                        for pred in preds:
                            filename = pred.pop("file_name")
T
Tingquan Gao 已提交
524 525 526
                            pred_str = ", ".join(
                                [f"{k}: {pred[k]}" for k in pred])
                            print(
G
gaotingquan 已提交
527
                                f"filename: {filename}, top-{topk}, {pred_str}")
T
Tingquan Gao 已提交
528

T
Tingquan Gao 已提交
529
                    img_list = []
T
Tingquan Gao 已提交
530
                    img_path_list = []
T
Tingquan Gao 已提交
531
                    yield preds
C
chenziheng 已提交
532
        else:
T
Tingquan Gao 已提交
533 534 535
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return
C
chenziheng 已提交
536 537


T
Tingquan Gao 已提交
538
# for CLI
C
chenziheng 已提交
539
def main():
T
Tingquan Gao 已提交
540 541 542
    """Function API used for commad line.
    """
    cfg = args_cfg()
T
Tingquan Gao 已提交
543 544 545 546 547
    clas_engine = PaddleClas(**cfg)
    res = clas_engine.predict(cfg["infer_imgs"], print_pred=True)
    for _ in res:
        pass
    print("Predict complete!")
T
Tingquan Gao 已提交
548
    return
C
chenziheng 已提交
549 550


T
Tingquan Gao 已提交
551
if __name__ == "__main__":
C
chenziheng 已提交
552
    main()