DataAugmentation.md 11.7 KB
Newer Older
C
cuicheng01 已提交
1 2
# 一、数据增强分类实战

C
cuicheng01 已提交
3
本节将基于ImageNet-1K的数据集详细介绍数据增强实验,如果想快速体验此方法,可以参考[**30分钟玩转PaddleClas(进阶版)**](../quick_start/quick_start_classification_professional.md)中基于CIFAR100的数据增强实验。如果想了解相关算法的内容,请参考[数据增强算法介绍](../algorithm_introduction/DataAugmentation.md)
C
cuicheng01 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

## 1.1 参数配置

由于不同的数据增强方式含有不同的超参数,为了便于理解和使用,我们在`configs/DataAugment`里分别列举了8种训练ResNet50的数据增强方式的参数配置文件,用户可以在`tools/run.sh`里直接替换配置文件的路径即可使用。此处分别挑选了图像变换、图像裁剪、图像混叠中的一个示例展示,其他参数配置用户可以自查配置文件。

### AutoAugment

`AotoAugment`的图像增广方式的配置如下。`AutoAugment`是在uint8的数据格式上转换的,所以其处理过程应该放在归一化操作(`NormalizeImage`)之前。

```yaml        
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - AutoAugment:
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
```

### RandAugment

`RandAugment`的图像增广方式的配置如下,其中用户需要指定其中的参数`num_layers``magnitude`,默认的数值分别是`2``5``RandAugment`是在uint8的数据格式上转换的,所以其处理过程应该放在归一化操作(`NormalizeImage`)之前。

```yaml        
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - RandAugment:
            num_layers: 2
            magnitude: 5
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
```
### TimmAutoAugment

`TimmAutoAugment`的图像增广方式的配置如下,其中用户需要指定其中的参数`config_str``interpolation``img_size`,默认的数值分别是`rand-m9-mstd0.5-inc1``bicubic``224``TimmAutoAugment`是在uint8的数据格式上转换的,所以其处理过程应该放在归一化操作(`NormalizeImage`)之前。

```yaml        
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - TimmAutoAugment:
            config_str: rand-m9-mstd0.5-inc1
            interpolation: bicubic
            img_size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
```

### Cutout

`Cutout`的图像增广方式的配置如下,其中用户需要指定其中的参数`n_holes``length`,默认的数值分别是`1``112`。类似其他图像裁剪类的数据增强方式,`Cutout`既可以在uint8格式的数据上操作,也可以在归一化(`NormalizeImage`)后的数据上操作,此处给出的是在归一化后的操作。

```yaml
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - Cutout:
            n_holes: 1
            length: 112
```

### RandomErasing

`RandomErasing`的图像增广方式的配置如下,其中用户需要指定其中的参数`EPSILON``sl``sh``r1``attempt``use_log_aspect``mode`,默认的数值分别是`0.25``0.02``1.0/3.0``0.3``10``True``pixel`。类似其他图像裁剪类的数据增强方式,`RandomErasing`既可以在uint8格式的数据上操作,也可以在归一化(`NormalizeImage`)后的数据上操作,此处给出的是在归一化后的操作。

```yaml
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - RandomErasing:
            EPSILON: 0.25
            sl: 0.02
            sh: 1.0/3.0
            r1: 0.3
            attempt: 10
            use_log_aspect: True
            mode: pixel
```

### HideAndSeek

`HideAndSeek`的图像增广方式的配置如下。类似其他图像裁剪类的数据增强方式,`HideAndSeek`既可以在uint8格式的数据上操作,也可以在归一化(`NormalizeImage`)后的数据上操作,此处给出的是在归一化后的操作。

```yaml
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - HideAndSeek:
```

### GridMask

`GridMask`的图像增广方式的配置如下,其中用户需要指定其中的参数`d1``d2``rotate``ratio``mode`, 默认的数值分别是`96``224``1``0.5``0`。类似其他图像裁剪类的数据增强方式,`GridMask`既可以在uint8格式的数据上操作,也可以在归一化(`NormalizeImage`)后的数据上操作,此处给出的是在归一化后的操作。

```yaml
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - GridMask:
            d1: 96
            d2: 224
            rotate: 1
            ratio: 0.5
            mode: 0
```


### Mixup

`Mixup`的图像增广方式的配置如下,其中用户需要指定其中的参数`alpha`,默认的数值是`0.2`。类似其他图像混合类的数据增强方式,`Mixup`是在图像做完数据处理后将每个batch内的数据做图像混叠,将混叠后的图像和标签输入网络中训练,所以其是在图像数据处理(图像变换、图像裁剪)后操作。

```yaml
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
      batch_transform_ops:
        - MixupOperator:
            alpha: 0.2
```

### Cutmix

`Cutmix`的图像增广方式的配置如下,其中用户需要指定其中的参数`alpha`,默认的数值是`0.2`。类似其他图像混合类的数据增强方式,`Cutmix`是在图像做完数据处理后将每个batch内的数据做图像混叠,将混叠后的图像和标签输入网络中训练,所以其是在图像数据处理(图像变换、图像裁剪)后操作。

```yaml
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
      batch_transform_ops:
        - CutmixOperator:
            alpha: 0.2
```

### Mixup与Cutmix同时使用

`Mixup``与Cutmix`同时使用的配置如下,其中用户需要指定额外的参数`prob`,该参数控制不同数据增强的概率,默认为`0.5`
```yaml
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - OpSampler:
            MixupOperator:
              alpha: 0.8
              prob: 0.5
            CutmixOperator:
              alpha: 1.0
              prob: 0.5
```

## 1.2 启动命令

当用户配置完训练环境后,类似于训练其他分类任务,只需要将`tools/train.sh`中的配置文件替换成为相应的数据增强方式的配置文件即可。

其中`train.sh`中的内容如下:

```bash

python3 -m paddle.distributed.launch \
    --selected_gpus="0,1,2,3" \
    --log_dir=ResNet50_Cutout \
    tools/train.py \
        -c ./ppcls/configs/ImageNet/DataAugment/ResNet50_Cutout.yaml
```

运行`train.sh`

```bash
sh tools/train.sh
```

## 1.3 注意事项

* 由于图像混叠时需对label进行混叠,无法计算训练数据的准确率,所以在训练过程中没有打印训练准确率。

* 在使用数据增强后,由于训练数据更难,所以训练损失函数可能较大,训练集的准确率相对较低,但其有拥更好的泛化能力,所以验证集的准确率相对较高。

* 在使用数据增强后,模型可能会趋于欠拟合状态,建议可以适当的调小`l2_decay`的值来获得更高的验证集准确率。

* 几乎每一类图像增强均含有超参数,我们只提供了基于ImageNet-1k的超参数,其他数据集需要用户自己调试超参数,具体超参数的含义用户可以阅读相关的论文,调试方法也可以参考训练技巧的章节。

C
cuicheng01 已提交
278
## 二、实验结果
C
cuicheng01 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

基于PaddleClas,在ImageNet1k数据集上的分类精度如下。

| 模型          | 初始学习率策略  | l2 decay | batch size | epoch | 数据变化策略         | Top1 Acc    | 论文中结论 |
|-------------|------------------|--------------|------------|-------|----------------|------------|----|
| ResNet50 | 0.1/cosine_decay | 0.0001       | 256        | 300   | 标准变换           | 0.7731 | - |
| ResNet50 | 0.1/cosine_decay | 0.0001       | 256        | 300   | AutoAugment    | 0.7795 |  0.7763 |
| ResNet50 | 0.1/cosine_decay | 0.0001       | 256        | 300   | mixup          | 0.7828 |  0.7790 |
| ResNet50 | 0.1/cosine_decay | 0.0001       | 256        | 300   | cutmix         | 0.7839 |  0.7860 |
| ResNet50 | 0.1/cosine_decay | 0.0001       | 256        | 300   | cutout         | 0.7801 |  - |
| ResNet50 | 0.1/cosine_decay | 0.0001       | 256        | 300   | gridmask       | 0.7785 |  0.7790 |
| ResNet50 | 0.1/cosine_decay | 0.0001       | 256        | 300   | random-augment | 0.7770 |  0.7760 |
| ResNet50 | 0.1/cosine_decay | 0.0001       | 256        | 300   | random erasing | 0.7791 |  - |
| ResNet50 | 0.1/cosine_decay | 0.0001       | 256        | 300   | hide and seek  | 0.7743 |  0.7720 |

**注意**
* 在这里的实验中,为了便于对比,我们将l2 decay固定设置为1e-4,在实际使用中,我们推荐尝试使用更小的l2 decay。结合数据增强,我们发现将l2 decay由1e-4减小为7e-5均能带来至少0.3~0.5%的精度提升。
* 我们目前尚未对不同策略进行组合并验证效果,这一块后续我们会开展更多的对比实验,敬请期待。