mobilenet_v3.py 10.9 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
littletomatodonkey's avatar
littletomatodonkey 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
littletomatodonkey's avatar
littletomatodonkey 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19 20
import numpy as np
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22 23
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
littletomatodonkey's avatar
littletomatodonkey 已提交
24 25
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
littletomatodonkey's avatar
littletomatodonkey 已提交
26
from paddle.regularizer import L2Decay
27 28

import math
W
WuHaobo 已提交
29 30

__all__ = [
31 32 33 34 35
    "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
    "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
    "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
    "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
    "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25"
W
WuHaobo 已提交
36 37 38
]


39 40 41 42 43 44 45 46
def make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v

littletomatodonkey's avatar
littletomatodonkey 已提交
47

littletomatodonkey's avatar
littletomatodonkey 已提交
48
class MobileNetV3(nn.Layer):
49 50 51 52
    def __init__(self, scale=1.0, model_name="small", class_dim=1000):
        super(MobileNetV3, self).__init__()

        inplanes = 16
W
WuHaobo 已提交
53 54 55
        if model_name == "large":
            self.cfg = [
                # k, exp, c,  se,     nl,  s,
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
                [3, 16, 16, False, "relu", 1],
                [3, 64, 24, False, "relu", 2],
                [3, 72, 24, False, "relu", 1],
                [5, 72, 40, True, "relu", 2],
                [5, 120, 40, True, "relu", 1],
                [5, 120, 40, True, "relu", 1],
                [3, 240, 80, False, "hard_swish", 2],
                [3, 200, 80, False, "hard_swish", 1],
                [3, 184, 80, False, "hard_swish", 1],
                [3, 184, 80, False, "hard_swish", 1],
                [3, 480, 112, True, "hard_swish", 1],
                [3, 672, 112, True, "hard_swish", 1],
                [5, 672, 160, True, "hard_swish", 2],
                [5, 960, 160, True, "hard_swish", 1],
                [5, 960, 160, True, "hard_swish", 1],
W
WuHaobo 已提交
71 72 73 74 75 76
            ]
            self.cls_ch_squeeze = 960
            self.cls_ch_expand = 1280
        elif model_name == "small":
            self.cfg = [
                # k, exp, c,  se,     nl,  s,
77 78 79 80 81 82 83 84 85 86 87
                [3, 16, 16, True, "relu", 2],
                [3, 72, 24, False, "relu", 2],
                [3, 88, 24, False, "relu", 1],
                [5, 96, 40, True, "hard_swish", 2],
                [5, 240, 40, True, "hard_swish", 1],
                [5, 240, 40, True, "hard_swish", 1],
                [5, 120, 48, True, "hard_swish", 1],
                [5, 144, 48, True, "hard_swish", 1],
                [5, 288, 96, True, "hard_swish", 2],
                [5, 576, 96, True, "hard_swish", 1],
                [5, 576, 96, True, "hard_swish", 1],
W
WuHaobo 已提交
88 89 90 91
            ]
            self.cls_ch_squeeze = 576
            self.cls_ch_expand = 1280
        else:
littletomatodonkey's avatar
littletomatodonkey 已提交
92 93
            raise NotImplementedError(
                "mode[{}_model] is not implemented!".format(model_name))
W
WuHaobo 已提交
94

95 96 97
        self.conv1 = ConvBNLayer(
            in_c=3,
            out_c=make_divisible(inplanes * scale),
W
WuHaobo 已提交
98 99 100 101 102
            filter_size=3,
            stride=2,
            padding=1,
            num_groups=1,
            if_act=True,
103 104 105 106
            act="hard_swish",
            name="conv1")

        self.block_list = []
W
WuHaobo 已提交
107
        i = 0
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        inplanes = make_divisible(inplanes * scale)
        for (k, exp, c, se, nl, s) in self.cfg:
            self.block_list.append(
                ResidualUnit(
                    in_c=inplanes,
                    mid_c=make_divisible(scale * exp),
                    out_c=make_divisible(scale * c),
                    filter_size=k,
                    stride=s,
                    use_se=se,
                    act=nl,
                    name="conv" + str(i + 2)))
            self.add_sublayer(
                sublayer=self.block_list[-1], name="conv" + str(i + 2))
            inplanes = make_divisible(scale * c)
W
WuHaobo 已提交
123 124
            i += 1

125 126 127
        self.last_second_conv = ConvBNLayer(
            in_c=inplanes,
            out_c=make_divisible(scale * self.cls_ch_squeeze),
W
WuHaobo 已提交
128 129 130 131 132
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
            if_act=True,
133 134 135
            act="hard_swish",
            name="conv_last")

littletomatodonkey's avatar
littletomatodonkey 已提交
136
        self.pool = AdaptiveAvgPool2d(1)
137

littletomatodonkey's avatar
littletomatodonkey 已提交
138 139 140 141
        self.last_conv = Conv2d(
            in_channels=make_divisible(scale * self.cls_ch_squeeze),
            out_channels=self.cls_ch_expand,
            kernel_size=1,
W
WuHaobo 已提交
142 143
            stride=1,
            padding=0,
littletomatodonkey's avatar
littletomatodonkey 已提交
144
            weight_attr=ParamAttr(name="last_1x1_conv_weights"),
W
WuHaobo 已提交
145
            bias_attr=False)
146 147

        self.out = Linear(
littletomatodonkey's avatar
littletomatodonkey 已提交
148 149 150
            self.cls_ch_expand,
            class_dim,
            weight_attr=ParamAttr("fc_weights"),
151 152 153 154 155 156 157 158 159
            bias_attr=ParamAttr(name="fc_offset"))

    def forward(self, inputs, label=None, dropout_prob=0.2):
        x = self.conv1(inputs)
        for block in self.block_list:
            x = block(x)
        x = self.last_second_conv(x)
        x = self.pool(x)
        x = self.last_conv(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
160 161 162
        x = F.hard_swish(x)
        x = F.dropout(x=x, p=dropout_prob)
        x = paddle.reshape(x, shape=[x.shape[0], x.shape[1]])
163 164 165 166 167
        x = self.out(x)

        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
168
class ConvBNLayer(nn.Layer):
169 170 171 172 173 174 175 176 177 178 179 180 181 182
    def __init__(self,
                 in_c,
                 out_c,
                 filter_size,
                 stride,
                 padding,
                 num_groups=1,
                 if_act=True,
                 act=None,
                 use_cudnn=True,
                 name=""):
        super(ConvBNLayer, self).__init__()
        self.if_act = if_act
        self.act = act
littletomatodonkey's avatar
littletomatodonkey 已提交
183 184 185 186
        self.conv = Conv2d(
            in_channels=in_c,
            out_channels=out_c,
            kernel_size=filter_size,
W
WuHaobo 已提交
187 188 189
            stride=stride,
            padding=padding,
            groups=num_groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
190 191 192
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        self.bn = BatchNorm(
193 194
            num_channels=out_c,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
195
            param_attr=ParamAttr(
littletomatodonkey's avatar
littletomatodonkey 已提交
196
                name=name + "_bn_scale", regularizer=L2Decay(0.0)),
W
WuHaobo 已提交
197
            bias_attr=ParamAttr(
littletomatodonkey's avatar
littletomatodonkey 已提交
198
                name=name + "_bn_offset", regularizer=L2Decay(0.0)),
199 200 201 202 203 204 205 206
            moving_mean_name=name + "_bn_mean",
            moving_variance_name=name + "_bn_variance")

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        if self.if_act:
            if self.act == "relu":
littletomatodonkey's avatar
littletomatodonkey 已提交
207
                x = F.relu(x)
208
            elif self.act == "hard_swish":
littletomatodonkey's avatar
littletomatodonkey 已提交
209
                x = F.hard_swish(x)
210 211 212 213 214 215
            else:
                print("The activation function is selected incorrectly.")
                exit()
        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
216
class ResidualUnit(nn.Layer):
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    def __init__(self,
                 in_c,
                 mid_c,
                 out_c,
                 filter_size,
                 stride,
                 use_se,
                 act=None,
                 name=''):
        super(ResidualUnit, self).__init__()
        self.if_shortcut = stride == 1 and in_c == out_c
        self.if_se = use_se

        self.expand_conv = ConvBNLayer(
            in_c=in_c,
            out_c=mid_c,
W
WuHaobo 已提交
233 234 235 236 237
            filter_size=1,
            stride=1,
            padding=0,
            if_act=True,
            act=act,
238 239 240 241
            name=name + "_expand")
        self.bottleneck_conv = ConvBNLayer(
            in_c=mid_c,
            out_c=mid_c,
W
WuHaobo 已提交
242 243 244
            filter_size=filter_size,
            stride=stride,
            padding=int((filter_size - 1) // 2),
245
            num_groups=mid_c,
W
WuHaobo 已提交
246 247
            if_act=True,
            act=act,
248 249 250 251 252 253
            name=name + "_depthwise")
        if self.if_se:
            self.mid_se = SEModule(mid_c, name=name + "_se")
        self.linear_conv = ConvBNLayer(
            in_c=mid_c,
            out_c=out_c,
W
WuHaobo 已提交
254 255 256 257
            filter_size=1,
            stride=1,
            padding=0,
            if_act=False,
258 259 260 261 262 263 264 265 266 267
            act=None,
            name=name + "_linear")

    def forward(self, inputs):
        x = self.expand_conv(inputs)
        x = self.bottleneck_conv(x)
        if self.if_se:
            x = self.mid_se(x)
        x = self.linear_conv(x)
        if self.if_shortcut:
littletomatodonkey's avatar
littletomatodonkey 已提交
268
            x = paddle.elementwise_add(inputs, x)
269 270 271
        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
272
class SEModule(nn.Layer):
273 274
    def __init__(self, channel, reduction=4, name=""):
        super(SEModule, self).__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
275
        self.avg_pool = AdaptiveAvgPool2d(1)
littletomatodonkey's avatar
littletomatodonkey 已提交
276 277 278 279
        self.conv1 = Conv2d(
            in_channels=channel,
            out_channels=channel // reduction,
            kernel_size=1,
280 281
            stride=1,
            padding=0,
littletomatodonkey's avatar
littletomatodonkey 已提交
282
            weight_attr=ParamAttr(name=name + "_1_weights"),
283
            bias_attr=ParamAttr(name=name + "_1_offset"))
littletomatodonkey's avatar
littletomatodonkey 已提交
284 285 286 287
        self.conv2 = Conv2d(
            in_channels=channel // reduction,
            out_channels=channel,
            kernel_size=1,
288 289
            stride=1,
            padding=0,
littletomatodonkey's avatar
littletomatodonkey 已提交
290
            weight_attr=ParamAttr(name + "_2_weights"),
291 292 293 294 295
            bias_attr=ParamAttr(name=name + "_2_offset"))

    def forward(self, inputs):
        outputs = self.avg_pool(inputs)
        outputs = self.conv1(outputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
296
        outputs = F.relu(outputs)
297
        outputs = self.conv2(outputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
298 299
        outputs = F.hard_sigmoid(outputs)
        return paddle.multiply(x=inputs, y=outputs, axis=0)
W
WuHaobo 已提交
300 301


302 303
def MobileNetV3_small_x0_35(**args):
    model = MobileNetV3(model_name="small", scale=0.35, **args)
W
WuHaobo 已提交
304 305 306
    return model


307 308
def MobileNetV3_small_x0_5(**args):
    model = MobileNetV3(model_name="small", scale=0.5, **args)
W
WuHaobo 已提交
309 310 311
    return model


312 313
def MobileNetV3_small_x0_75(**args):
    model = MobileNetV3(model_name="small", scale=0.75, **args)
W
WuHaobo 已提交
314 315 316
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
317
def MobileNetV3_small_x1_0(**args):
318
    model = MobileNetV3(model_name="small", scale=1.0, **args)
W
WuHaobo 已提交
319 320 321
    return model


322 323
def MobileNetV3_small_x1_25(**args):
    model = MobileNetV3(model_name="small", scale=1.25, **args)
W
WuHaobo 已提交
324 325 326
    return model


327 328
def MobileNetV3_large_x0_35(**args):
    model = MobileNetV3(model_name="large", scale=0.35, **args)
W
WuHaobo 已提交
329 330 331
    return model


332 333
def MobileNetV3_large_x0_5(**args):
    model = MobileNetV3(model_name="large", scale=0.5, **args)
W
WuHaobo 已提交
334 335 336
    return model


337 338
def MobileNetV3_large_x0_75(**args):
    model = MobileNetV3(model_name="large", scale=0.75, **args)
W
WuHaobo 已提交
339 340 341
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
342
def MobileNetV3_large_x1_0(**args):
343
    model = MobileNetV3(model_name="large", scale=1.0, **args)
W
WuHaobo 已提交
344 345 346
    return model


347 348
def MobileNetV3_large_x1_25(**args):
    model = MobileNetV3(model_name="large", scale=1.25, **args)
W
WuHaobo 已提交
349
    return model