mobilenet_v3.py 11.4 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
littletomatodonkey's avatar
littletomatodonkey 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
littletomatodonkey's avatar
littletomatodonkey 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19 20
import numpy as np
import paddle
W
WuHaobo 已提交
21 22
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
23 24 25
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout

import math
W
WuHaobo 已提交
26 27

__all__ = [
28 29 30 31 32
    "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
    "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
    "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
    "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
    "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25"
W
WuHaobo 已提交
33 34 35
]


36 37 38 39 40 41 42 43
def make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v

littletomatodonkey's avatar
littletomatodonkey 已提交
44

45 46 47 48 49
class MobileNetV3(fluid.dygraph.Layer):
    def __init__(self, scale=1.0, model_name="small", class_dim=1000):
        super(MobileNetV3, self).__init__()

        inplanes = 16
W
WuHaobo 已提交
50 51 52
        if model_name == "large":
            self.cfg = [
                # k, exp, c,  se,     nl,  s,
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
                [3, 16, 16, False, "relu", 1],
                [3, 64, 24, False, "relu", 2],
                [3, 72, 24, False, "relu", 1],
                [5, 72, 40, True, "relu", 2],
                [5, 120, 40, True, "relu", 1],
                [5, 120, 40, True, "relu", 1],
                [3, 240, 80, False, "hard_swish", 2],
                [3, 200, 80, False, "hard_swish", 1],
                [3, 184, 80, False, "hard_swish", 1],
                [3, 184, 80, False, "hard_swish", 1],
                [3, 480, 112, True, "hard_swish", 1],
                [3, 672, 112, True, "hard_swish", 1],
                [5, 672, 160, True, "hard_swish", 2],
                [5, 960, 160, True, "hard_swish", 1],
                [5, 960, 160, True, "hard_swish", 1],
W
WuHaobo 已提交
68 69 70 71 72 73
            ]
            self.cls_ch_squeeze = 960
            self.cls_ch_expand = 1280
        elif model_name == "small":
            self.cfg = [
                # k, exp, c,  se,     nl,  s,
74 75 76 77 78 79 80 81 82 83 84
                [3, 16, 16, True, "relu", 2],
                [3, 72, 24, False, "relu", 2],
                [3, 88, 24, False, "relu", 1],
                [5, 96, 40, True, "hard_swish", 2],
                [5, 240, 40, True, "hard_swish", 1],
                [5, 240, 40, True, "hard_swish", 1],
                [5, 120, 48, True, "hard_swish", 1],
                [5, 144, 48, True, "hard_swish", 1],
                [5, 288, 96, True, "hard_swish", 2],
                [5, 576, 96, True, "hard_swish", 1],
                [5, 576, 96, True, "hard_swish", 1],
W
WuHaobo 已提交
85 86 87 88
            ]
            self.cls_ch_squeeze = 576
            self.cls_ch_expand = 1280
        else:
littletomatodonkey's avatar
littletomatodonkey 已提交
89 90
            raise NotImplementedError(
                "mode[{}_model] is not implemented!".format(model_name))
W
WuHaobo 已提交
91

92 93 94
        self.conv1 = ConvBNLayer(
            in_c=3,
            out_c=make_divisible(inplanes * scale),
W
WuHaobo 已提交
95 96 97 98 99
            filter_size=3,
            stride=2,
            padding=1,
            num_groups=1,
            if_act=True,
100 101 102 103
            act="hard_swish",
            name="conv1")

        self.block_list = []
W
WuHaobo 已提交
104
        i = 0
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        inplanes = make_divisible(inplanes * scale)
        for (k, exp, c, se, nl, s) in self.cfg:
            self.block_list.append(
                ResidualUnit(
                    in_c=inplanes,
                    mid_c=make_divisible(scale * exp),
                    out_c=make_divisible(scale * c),
                    filter_size=k,
                    stride=s,
                    use_se=se,
                    act=nl,
                    name="conv" + str(i + 2)))
            self.add_sublayer(
                sublayer=self.block_list[-1], name="conv" + str(i + 2))
            inplanes = make_divisible(scale * c)
W
WuHaobo 已提交
120 121
            i += 1

122 123 124
        self.last_second_conv = ConvBNLayer(
            in_c=inplanes,
            out_c=make_divisible(scale * self.cls_ch_squeeze),
W
WuHaobo 已提交
125 126 127 128 129
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
            if_act=True,
130 131 132 133 134 135 136 137 138
            act="hard_swish",
            name="conv_last")

        self.pool = Pool2D(
            pool_type="avg", global_pooling=True, use_cudnn=False)

        self.last_conv = Conv2D(
            num_channels=make_divisible(scale * self.cls_ch_squeeze),
            num_filters=self.cls_ch_expand,
W
WuHaobo 已提交
139 140 141 142
            filter_size=1,
            stride=1,
            padding=0,
            act=None,
143
            param_attr=ParamAttr(name="last_1x1_conv_weights"),
W
WuHaobo 已提交
144
            bias_attr=False)
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

        self.out = Linear(
            input_dim=self.cls_ch_expand,
            output_dim=class_dim,
            param_attr=ParamAttr("fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))

    def forward(self, inputs, label=None, dropout_prob=0.2):
        x = self.conv1(inputs)
        for block in self.block_list:
            x = block(x)
        x = self.last_second_conv(x)
        x = self.pool(x)
        x = self.last_conv(x)
        x = fluid.layers.hard_swish(x)
        x = fluid.layers.dropout(x=x, dropout_prob=dropout_prob)
        x = fluid.layers.reshape(x, shape=[x.shape[0], x.shape[1]])
        x = self.out(x)

        return x


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 in_c,
                 out_c,
                 filter_size,
                 stride,
                 padding,
                 num_groups=1,
                 if_act=True,
                 act=None,
                 use_cudnn=True,
                 name=""):
        super(ConvBNLayer, self).__init__()
        self.if_act = if_act
        self.act = act
        self.conv = fluid.dygraph.Conv2D(
            num_channels=in_c,
            num_filters=out_c,
W
WuHaobo 已提交
185 186 187 188
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
189 190
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False,
W
WuHaobo 已提交
191
            use_cudnn=use_cudnn,
192 193 194 195
            act=None)
        self.bn = fluid.dygraph.BatchNorm(
            num_channels=out_c,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
196
            param_attr=ParamAttr(
197
                name=name + "_bn_scale",
W
WuHaobo 已提交
198 199 200
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=0.0)),
            bias_attr=ParamAttr(
201
                name=name + "_bn_offset",
W
WuHaobo 已提交
202 203
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=0.0)),
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
            moving_mean_name=name + "_bn_mean",
            moving_variance_name=name + "_bn_variance")

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        if self.if_act:
            if self.act == "relu":
                x = fluid.layers.relu(x)
            elif self.act == "hard_swish":
                x = fluid.layers.hard_swish(x)
            else:
                print("The activation function is selected incorrectly.")
                exit()
        return x


class ResidualUnit(fluid.dygraph.Layer):
    def __init__(self,
                 in_c,
                 mid_c,
                 out_c,
                 filter_size,
                 stride,
                 use_se,
                 act=None,
                 name=''):
        super(ResidualUnit, self).__init__()
        self.if_shortcut = stride == 1 and in_c == out_c
        self.if_se = use_se

        self.expand_conv = ConvBNLayer(
            in_c=in_c,
            out_c=mid_c,
W
WuHaobo 已提交
238 239 240 241 242
            filter_size=1,
            stride=1,
            padding=0,
            if_act=True,
            act=act,
243 244 245 246
            name=name + "_expand")
        self.bottleneck_conv = ConvBNLayer(
            in_c=mid_c,
            out_c=mid_c,
W
WuHaobo 已提交
247 248 249
            filter_size=filter_size,
            stride=stride,
            padding=int((filter_size - 1) // 2),
250
            num_groups=mid_c,
W
WuHaobo 已提交
251 252
            if_act=True,
            act=act,
253 254 255 256 257 258
            name=name + "_depthwise")
        if self.if_se:
            self.mid_se = SEModule(mid_c, name=name + "_se")
        self.linear_conv = ConvBNLayer(
            in_c=mid_c,
            out_c=out_c,
W
WuHaobo 已提交
259 260 261 262
            filter_size=1,
            stride=1,
            padding=0,
            if_act=False,
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
            act=None,
            name=name + "_linear")

    def forward(self, inputs):
        x = self.expand_conv(inputs)
        x = self.bottleneck_conv(x)
        if self.if_se:
            x = self.mid_se(x)
        x = self.linear_conv(x)
        if self.if_shortcut:
            x = fluid.layers.elementwise_add(inputs, x)
        return x


class SEModule(fluid.dygraph.Layer):
    def __init__(self, channel, reduction=4, name=""):
        super(SEModule, self).__init__()
        self.avg_pool = fluid.dygraph.Pool2D(
            pool_type="avg", global_pooling=True, use_cudnn=False)
        self.conv1 = fluid.dygraph.Conv2D(
            num_channels=channel,
            num_filters=channel // reduction,
            filter_size=1,
            stride=1,
            padding=0,
            act="relu",
            param_attr=ParamAttr(name=name + "_1_weights"),
            bias_attr=ParamAttr(name=name + "_1_offset"))
        self.conv2 = fluid.dygraph.Conv2D(
            num_channels=channel // reduction,
            num_filters=channel,
            filter_size=1,
            stride=1,
            padding=0,
            act=None,
            param_attr=ParamAttr(name + "_2_weights"),
            bias_attr=ParamAttr(name=name + "_2_offset"))

    def forward(self, inputs):
        outputs = self.avg_pool(inputs)
        outputs = self.conv1(outputs)
        outputs = self.conv2(outputs)
        outputs = fluid.layers.hard_sigmoid(outputs)
        return fluid.layers.elementwise_mul(x=inputs, y=outputs, axis=0)
W
WuHaobo 已提交
307 308


309 310
def MobileNetV3_small_x0_35(**args):
    model = MobileNetV3(model_name="small", scale=0.35, **args)
W
WuHaobo 已提交
311 312 313
    return model


314 315
def MobileNetV3_small_x0_5(**args):
    model = MobileNetV3(model_name="small", scale=0.5, **args)
W
WuHaobo 已提交
316 317 318
    return model


319 320
def MobileNetV3_small_x0_75(**args):
    model = MobileNetV3(model_name="small", scale=0.75, **args)
W
WuHaobo 已提交
321 322 323
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
324
def MobileNetV3_small_x1_0(**args):
325
    model = MobileNetV3(model_name="small", scale=1.0, **args)
W
WuHaobo 已提交
326 327 328
    return model


329 330
def MobileNetV3_small_x1_25(**args):
    model = MobileNetV3(model_name="small", scale=1.25, **args)
W
WuHaobo 已提交
331 332 333
    return model


334 335
def MobileNetV3_large_x0_35(**args):
    model = MobileNetV3(model_name="large", scale=0.35, **args)
W
WuHaobo 已提交
336 337 338
    return model


339 340
def MobileNetV3_large_x0_5(**args):
    model = MobileNetV3(model_name="large", scale=0.5, **args)
W
WuHaobo 已提交
341 342 343
    return model


344 345
def MobileNetV3_large_x0_75(**args):
    model = MobileNetV3(model_name="large", scale=0.75, **args)
W
WuHaobo 已提交
346 347 348
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
349
def MobileNetV3_large_x1_0(**args):
350
    model = MobileNetV3(model_name="large", scale=1.0, **args)
W
WuHaobo 已提交
351 352 353
    return model


354 355
def MobileNetV3_large_x1_25(**args):
    model = MobileNetV3(model_name="large", scale=1.25, **args)
W
WuHaobo 已提交
356
    return model