se_resnet_vd.py 12.6 KB
Newer Older
W
WuHaobo 已提交
1
#
2 3 4
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
5 6 7
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
8 9 10 11 12
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
13 14 15 16 17

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

18
import numpy as np
W
WuHaobo 已提交
19
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
20 21 22
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
23 24
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
littletomatodonkey 已提交
25
from paddle.nn.initializer import Uniform
26 27

import math
W
WuHaobo 已提交
28

C
cuicheng01 已提交
29 30 31
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {
littletomatodonkey's avatar
littletomatodonkey 已提交
32 33 34 35 36 37 38
    "SE_ResNet18_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams",
    "SE_ResNet34_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams",
    "SE_ResNet50_vd":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams",
}
C
cuicheng01 已提交
39 40

__all__ = list(MODEL_URLS.keys())
W
WuHaobo 已提交
41 42


littletomatodonkey's avatar
littletomatodonkey 已提交
43
class ConvBNLayer(nn.Layer):
44 45 46 47 48 49 50 51 52 53
    def __init__(
            self,
            num_channels,
            num_filters,
            filter_size,
            stride=1,
            groups=1,
            is_vd_mode=False,
            act=None,
            name=None, ):
54 55 56
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
57
        self._pool2d_avg = AvgPool2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
58 59
            kernel_size=2, stride=2, padding=0, ceil_mode=True)

60
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
61 62 63
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
64
            stride=stride,
W
WuHaobo 已提交
65 66
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
67
            weight_attr=ParamAttr(name=name + "_weights"),
68
            bias_attr=False)
W
WuHaobo 已提交
69 70 71 72
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
73 74
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
75 76 77 78
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
79
            moving_variance_name=bn_name + '_variance')
W
WuHaobo 已提交
80

81 82 83 84 85 86 87 88
    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
89
class BottleneckBlock(nn.Layer):
90 91 92 93 94 95 96
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 reduction_ratio=16,
97
                 name=None):
98 99 100 101
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
102 103 104
            num_filters=num_filters,
            filter_size=1,
            act='relu',
105
            name=name + "_branch2a")
106 107
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
108 109 110 111
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
112
            name=name + "_branch2b")
113 114
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
115 116 117
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
118
            name=name + "_branch2c")
119
        self.scale = SELayer(
W
WuHaobo 已提交
120
            num_channels=num_filters * 4,
121
            num_filters=num_filters * 4,
W
WuHaobo 已提交
122
            reduction_ratio=reduction_ratio,
123
            name='fc_' + name)
W
WuHaobo 已提交
124

125 126 127 128 129 130 131
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
132
                name=name + "_branch1")
133 134

        self.shortcut = shortcut
W
WuHaobo 已提交
135

136 137 138 139 140
    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
        scale = self.scale(conv2)
W
WuHaobo 已提交
141

142 143 144 145
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
146 147
        y = paddle.add(x=short, y=scale)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
148
        return y
149 150


littletomatodonkey's avatar
littletomatodonkey 已提交
151
class BasicBlock(nn.Layer):
152 153 154 155 156 157 158
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 reduction_ratio=16,
159
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
160
        super(BasicBlock, self).__init__()
161 162 163
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
164 165 166
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
167
            act='relu',
168
            name=name + "_branch2a")
169 170
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
171 172 173
            num_filters=num_filters,
            filter_size=3,
            act=None,
174
            name=name + "_branch2b")
175 176

        self.scale = SELayer(
W
WuHaobo 已提交
177
            num_channels=num_filters,
178
            num_filters=num_filters,
W
WuHaobo 已提交
179
            reduction_ratio=reduction_ratio,
180
            name='fc_' + name)
181 182 183 184 185 186 187 188

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
189
                name=name + "_branch1")
190 191 192 193 194 195 196 197 198 199 200 201

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        scale = self.scale(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
202 203
        y = paddle.add(x=short, y=scale)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
204
        return y
205 206


littletomatodonkey's avatar
littletomatodonkey 已提交
207
class SELayer(nn.Layer):
208
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
209 210
        super(SELayer, self).__init__()

211
        self.pool2d_gap = AdaptiveAvgPool2D(1)
212 213 214 215 216 217 218 219

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
        self.squeeze = Linear(
            num_channels,
            med_ch,
littletomatodonkey's avatar
littletomatodonkey 已提交
220 221
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
W
WuHaobo 已提交
222
            bias_attr=ParamAttr(name=name + '_sqz_offset'))
223 224 225 226 227

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
        self.excitation = Linear(
            med_ch,
            num_filters,
littletomatodonkey's avatar
littletomatodonkey 已提交
228 229
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
W
WuHaobo 已提交
230 231
            bias_attr=ParamAttr(name=name + '_exc_offset'))

232 233
    def forward(self, input):
        pool = self.pool2d_gap(input)
L
littletomatodonkey 已提交
234
        pool = paddle.squeeze(pool, axis=[2, 3])
235
        squeeze = self.squeeze(pool)
littletomatodonkey's avatar
littletomatodonkey 已提交
236
        squeeze = F.relu(squeeze)
237
        excitation = self.excitation(squeeze)
littletomatodonkey's avatar
littletomatodonkey 已提交
238
        excitation = F.sigmoid(excitation)
L
littletomatodonkey 已提交
239
        excitation = paddle.unsqueeze(excitation, axis=[2, 3])
240 241
        out = input * excitation
        return out
W
WuHaobo 已提交
242

243

littletomatodonkey's avatar
littletomatodonkey 已提交
244
class SE_ResNet_vd(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
245
    def __init__(self, layers=50, class_num=1000):
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        super(SE_ResNet_vd, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
269
            num_channels=3,
270 271 272 273
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
274
            name="conv1_1")
275 276 277 278 279 280
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
281
            name="conv1_2")
282 283 284 285 286 287
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
288 289
            name="conv1_3")
        self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
312
                            name=conv_name))
313 314 315 316 317 318 319
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
320
                    basic_block = self.add_sublayer(
321
                        'bb_%d_%d' % (block, i),
littletomatodonkey's avatar
littletomatodonkey 已提交
322
                        BasicBlock(
323 324 325 326 327 328 329
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
330
                    self.block_list.append(basic_block)
331 332
                    shortcut = True

333
        self.pool2d_avg = AdaptiveAvgPool2D(1)
334 335 336 337 338 339 340

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
littletomatodonkey's avatar
littletomatodonkey 已提交
341
            class_num,
littletomatodonkey's avatar
littletomatodonkey 已提交
342 343
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc6_weights"),
344 345 346 347 348 349 350 351 352 353
            bias_attr=ParamAttr(name="fc6_offset"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
354
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
355 356 357
        y = self.out(y)
        return y

littletomatodonkey's avatar
littletomatodonkey 已提交
358

C
cuicheng01 已提交
359 360 361 362 363 364 365 366 367 368 369
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )
littletomatodonkey's avatar
littletomatodonkey 已提交
370

C
cuicheng01 已提交
371 372 373

def SE_ResNet18_vd(pretrained=False, use_ssld=False, **kwargs):
    model = SE_ResNet_vd(layers=18, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
374 375
    _load_pretrained(
        pretrained, model, MODEL_URLS["SE_ResNet18_vd"], use_ssld=use_ssld)
W
WuHaobo 已提交
376 377 378
    return model


C
cuicheng01 已提交
379 380
def SE_ResNet34_vd(pretrained=False, use_ssld=False, **kwargs):
    model = SE_ResNet_vd(layers=34, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
381 382
    _load_pretrained(
        pretrained, model, MODEL_URLS["SE_ResNet34_vd"], use_ssld=use_ssld)
W
WuHaobo 已提交
383 384 385
    return model


C
cuicheng01 已提交
386 387
def SE_ResNet50_vd(pretrained=False, use_ssld=False, **kwargs):
    model = SE_ResNet_vd(layers=50, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
388 389
    _load_pretrained(
        pretrained, model, MODEL_URLS["SE_ResNet50_vd"], use_ssld=use_ssld)
W
WuHaobo 已提交
390
    return model