densenet.py 11.1 KB
Newer Older
C
cuicheng01 已提交
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
littletomatodonkey's avatar
littletomatodonkey 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

littletomatodonkey's avatar
littletomatodonkey 已提交
19
import numpy as np
W
WuHaobo 已提交
20
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22
from paddle import ParamAttr
import paddle.nn as nn
23 24
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
littletomatodonkey 已提交
25
from paddle.nn.initializer import Uniform
littletomatodonkey's avatar
littletomatodonkey 已提交
26 27

import math
W
WuHaobo 已提交
28

C
cuicheng01 已提交
29 30
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

littletomatodonkey's avatar
littletomatodonkey 已提交
31 32 33 34 35 36 37 38 39 40 41 42
MODEL_URLS = {
    "DenseNet121":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams",
    "DenseNet161":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams",
    "DenseNet169":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams",
    "DenseNet201":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams",
    "DenseNet264":
    "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams",
}
C
cuicheng01 已提交
43 44

__all__ = list(MODEL_URLS.keys())
W
WuHaobo 已提交
45 46


littletomatodonkey's avatar
littletomatodonkey 已提交
47
class BNACConvLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(BNACConvLayer, self).__init__()

        self._batch_norm = BatchNorm(
            num_channels,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

67
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
68 69 70
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
littletomatodonkey's avatar
littletomatodonkey 已提交
71 72 73
            stride=stride,
            padding=pad,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
74
            weight_attr=ParamAttr(name=name + "_weights"),
littletomatodonkey's avatar
littletomatodonkey 已提交
75 76 77 78 79 80 81 82
            bias_attr=False)

    def forward(self, input):
        y = self._batch_norm(input)
        y = self._conv(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
83
class DenseLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    def __init__(self, num_channels, growth_rate, bn_size, dropout, name=None):
        super(DenseLayer, self).__init__()
        self.dropout = dropout

        self.bn_ac_func1 = BNACConvLayer(
            num_channels=num_channels,
            num_filters=bn_size * growth_rate,
            filter_size=1,
            pad=0,
            stride=1,
            name=name + "_x1")

        self.bn_ac_func2 = BNACConvLayer(
            num_channels=bn_size * growth_rate,
            num_filters=growth_rate,
            filter_size=3,
            pad=1,
            stride=1,
            name=name + "_x2")

        if dropout:
littletomatodonkey's avatar
littletomatodonkey 已提交
105
            self.dropout_func = Dropout(p=dropout, mode="downscale_in_infer")
littletomatodonkey's avatar
littletomatodonkey 已提交
106 107 108 109 110 111

    def forward(self, input):
        conv = self.bn_ac_func1(input)
        conv = self.bn_ac_func2(conv)
        if self.dropout:
            conv = self.dropout_func(conv)
littletomatodonkey's avatar
littletomatodonkey 已提交
112
        conv = paddle.concat([input, conv], axis=1)
littletomatodonkey's avatar
littletomatodonkey 已提交
113 114 115
        return conv


littletomatodonkey's avatar
littletomatodonkey 已提交
116
class DenseBlock(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    def __init__(self,
                 num_channels,
                 num_layers,
                 bn_size,
                 growth_rate,
                 dropout,
                 name=None):
        super(DenseBlock, self).__init__()
        self.dropout = dropout

        self.dense_layer_func = []

        pre_channel = num_channels
        for layer in range(num_layers):
            self.dense_layer_func.append(
                self.add_sublayer(
                    "{}_{}".format(name, layer + 1),
                    DenseLayer(
                        num_channels=pre_channel,
                        growth_rate=growth_rate,
                        bn_size=bn_size,
                        dropout=dropout,
                        name=name + '_' + str(layer + 1))))
            pre_channel = pre_channel + growth_rate

    def forward(self, input):
        conv = input
        for func in self.dense_layer_func:
            conv = func(conv)
        return conv


littletomatodonkey's avatar
littletomatodonkey 已提交
149
class TransitionLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
150 151 152 153 154 155 156 157 158 159 160
    def __init__(self, num_channels, num_output_features, name=None):
        super(TransitionLayer, self).__init__()

        self.conv_ac_func = BNACConvLayer(
            num_channels=num_channels,
            num_filters=num_output_features,
            filter_size=1,
            pad=0,
            stride=1,
            name=name)

161
        self.pool2d_avg = AvgPool2D(kernel_size=2, stride=2, padding=0)
littletomatodonkey's avatar
littletomatodonkey 已提交
162 163 164 165 166 167 168

    def forward(self, input):
        y = self.conv_ac_func(input)
        y = self.pool2d_avg(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
169
class ConvBNLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
170 171 172 173 174 175 176 177 178 179 180
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(ConvBNLayer, self).__init__()

181
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
182 183 184
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
littletomatodonkey's avatar
littletomatodonkey 已提交
185 186 187
            stride=stride,
            padding=pad,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
188
            weight_attr=ParamAttr(name=name + "_weights"),
littletomatodonkey's avatar
littletomatodonkey 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
            bias_attr=False)
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

    def forward(self, input):
        y = self._conv(input)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
204
class DenseNet(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
205
    def __init__(self, layers=60, bn_size=4, dropout=0, class_num=1000):
littletomatodonkey's avatar
littletomatodonkey 已提交
206
        super(DenseNet, self).__init__()
W
WuHaobo 已提交
207 208 209

        supported_layers = [121, 161, 169, 201, 264]
        assert layers in supported_layers, \
littletomatodonkey's avatar
littletomatodonkey 已提交
210 211
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
W
WuHaobo 已提交
212 213 214 215 216 217 218 219
        densenet_spec = {
            121: (64, 32, [6, 12, 24, 16]),
            161: (96, 48, [6, 12, 36, 24]),
            169: (64, 32, [6, 12, 32, 32]),
            201: (64, 32, [6, 12, 48, 32]),
            264: (64, 32, [6, 12, 64, 48])
        }
        num_init_features, growth_rate, block_config = densenet_spec[layers]
littletomatodonkey's avatar
littletomatodonkey 已提交
220 221 222

        self.conv1_func = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
223 224 225
            num_filters=num_init_features,
            filter_size=7,
            stride=2,
littletomatodonkey's avatar
littletomatodonkey 已提交
226
            pad=3,
W
WuHaobo 已提交
227
            act='relu',
littletomatodonkey's avatar
littletomatodonkey 已提交
228 229
            name="conv1")

230
        self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
littletomatodonkey's avatar
littletomatodonkey 已提交
231 232 233 234 235 236

        self.block_config = block_config

        self.dense_block_func_list = []
        self.transition_func_list = []
        pre_num_channels = num_init_features
W
WuHaobo 已提交
237 238
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
littletomatodonkey's avatar
littletomatodonkey 已提交
239 240 241 242 243 244 245 246 247 248 249
            self.dense_block_func_list.append(
                self.add_sublayer(
                    "db_conv_{}".format(i + 2),
                    DenseBlock(
                        num_channels=pre_num_channels,
                        num_layers=num_layers,
                        bn_size=bn_size,
                        growth_rate=growth_rate,
                        dropout=dropout,
                        name='conv' + str(i + 2))))

W
WuHaobo 已提交
250
            num_features = num_features + num_layers * growth_rate
littletomatodonkey's avatar
littletomatodonkey 已提交
251 252
            pre_num_channels = num_features

W
WuHaobo 已提交
253
            if i != len(block_config) - 1:
littletomatodonkey's avatar
littletomatodonkey 已提交
254 255 256 257 258 259 260 261
                self.transition_func_list.append(
                    self.add_sublayer(
                        "tr_conv{}_blk".format(i + 2),
                        TransitionLayer(
                            num_channels=pre_num_channels,
                            num_output_features=num_features // 2,
                            name='conv' + str(i + 2) + "_blk")))
                pre_num_channels = num_features // 2
W
WuHaobo 已提交
262
                num_features = num_features // 2
littletomatodonkey's avatar
littletomatodonkey 已提交
263 264 265 266

        self.batch_norm = BatchNorm(
            num_features,
            act="relu",
W
WuHaobo 已提交
267 268 269 270
            param_attr=ParamAttr(name='conv5_blk_bn_scale'),
            bias_attr=ParamAttr(name='conv5_blk_bn_offset'),
            moving_mean_name='conv5_blk_bn_mean',
            moving_variance_name='conv5_blk_bn_variance')
littletomatodonkey's avatar
littletomatodonkey 已提交
271

272
        self.pool2d_avg = AdaptiveAvgPool2D(1)
littletomatodonkey's avatar
littletomatodonkey 已提交
273 274 275 276 277

        stdv = 1.0 / math.sqrt(num_features * 1.0)

        self.out = Linear(
            num_features,
littletomatodonkey's avatar
littletomatodonkey 已提交
278
            class_num,
littletomatodonkey's avatar
littletomatodonkey 已提交
279 280
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_weights"),
littletomatodonkey's avatar
littletomatodonkey 已提交
281
            bias_attr=ParamAttr(name="fc_offset"))
W
WuHaobo 已提交
282

littletomatodonkey's avatar
littletomatodonkey 已提交
283 284 285
    def forward(self, input):
        conv = self.conv1_func(input)
        conv = self.pool2d_max(conv)
W
WuHaobo 已提交
286

littletomatodonkey's avatar
littletomatodonkey 已提交
287 288 289 290
        for i, num_layers in enumerate(self.block_config):
            conv = self.dense_block_func_list[i](conv)
            if i != len(self.block_config) - 1:
                conv = self.transition_func_list[i](conv)
W
WuHaobo 已提交
291

littletomatodonkey's avatar
littletomatodonkey 已提交
292 293
        conv = self.batch_norm(conv)
        y = self.pool2d_avg(conv)
L
littletomatodonkey 已提交
294
        y = paddle.flatten(y, start_axis=1, stop_axis=-1)
littletomatodonkey's avatar
littletomatodonkey 已提交
295 296
        y = self.out(y)
        return y
W
WuHaobo 已提交
297

littletomatodonkey's avatar
littletomatodonkey 已提交
298

C
cuicheng01 已提交
299 300 301 302 303 304 305 306 307 308 309 310
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )

littletomatodonkey's avatar
littletomatodonkey 已提交
311

C
cuicheng01 已提交
312 313
def DenseNet121(pretrained=False, use_ssld=False, **kwargs):
    model = DenseNet(layers=121, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
314 315
    _load_pretrained(
        pretrained, model, MODEL_URLS["DenseNet121"], use_ssld=use_ssld)
W
WuHaobo 已提交
316 317 318
    return model


C
cuicheng01 已提交
319 320
def DenseNet161(pretrained=False, use_ssld=False, **kwargs):
    model = DenseNet(layers=161, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
321 322
    _load_pretrained(
        pretrained, model, MODEL_URLS["DenseNet161"], use_ssld=use_ssld)
W
WuHaobo 已提交
323 324 325
    return model


C
cuicheng01 已提交
326 327
def DenseNet169(pretrained=False, use_ssld=False, **kwargs):
    model = DenseNet(layers=169, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
328 329
    _load_pretrained(
        pretrained, model, MODEL_URLS["DenseNet169"], use_ssld=use_ssld)
W
WuHaobo 已提交
330 331 332
    return model


C
cuicheng01 已提交
333 334
def DenseNet201(pretrained=False, use_ssld=False, **kwargs):
    model = DenseNet(layers=201, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
335 336
    _load_pretrained(
        pretrained, model, MODEL_URLS["DenseNet201"], use_ssld=use_ssld)
W
WuHaobo 已提交
337 338 339
    return model


C
cuicheng01 已提交
340 341
def DenseNet264(pretrained=False, use_ssld=False, **kwargs):
    model = DenseNet(layers=264, **kwargs)
littletomatodonkey's avatar
littletomatodonkey 已提交
342 343
    _load_pretrained(
        pretrained, model, MODEL_URLS["DenseNet264"], use_ssld=use_ssld)
W
WuHaobo 已提交
344
    return model