densenet.py 11.1 KB
Newer Older
C
cuicheng01 已提交
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
littletomatodonkey's avatar
littletomatodonkey 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

littletomatodonkey's avatar
littletomatodonkey 已提交
19
import numpy as np
W
WuHaobo 已提交
20
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22
from paddle import ParamAttr
import paddle.nn as nn
23 24
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
littletomatodonkey 已提交
25
from paddle.nn.initializer import Uniform
littletomatodonkey's avatar
littletomatodonkey 已提交
26 27

import math
W
WuHaobo 已提交
28

C
cuicheng01 已提交
29 30 31 32 33 34 35 36 37 38
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {"DenseNet121": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams",
              "DenseNet161": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams",
              "DenseNet169": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams",
              "DenseNet201": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams",
              "DenseNet264": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams",
             }

__all__ = list(MODEL_URLS.keys())
W
WuHaobo 已提交
39 40


littletomatodonkey's avatar
littletomatodonkey 已提交
41
class BNACConvLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(BNACConvLayer, self).__init__()

        self._batch_norm = BatchNorm(
            num_channels,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

61
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
62 63 64
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
littletomatodonkey's avatar
littletomatodonkey 已提交
65 66 67
            stride=stride,
            padding=pad,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
68
            weight_attr=ParamAttr(name=name + "_weights"),
littletomatodonkey's avatar
littletomatodonkey 已提交
69 70 71 72 73 74 75 76
            bias_attr=False)

    def forward(self, input):
        y = self._batch_norm(input)
        y = self._conv(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
77
class DenseLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    def __init__(self, num_channels, growth_rate, bn_size, dropout, name=None):
        super(DenseLayer, self).__init__()
        self.dropout = dropout

        self.bn_ac_func1 = BNACConvLayer(
            num_channels=num_channels,
            num_filters=bn_size * growth_rate,
            filter_size=1,
            pad=0,
            stride=1,
            name=name + "_x1")

        self.bn_ac_func2 = BNACConvLayer(
            num_channels=bn_size * growth_rate,
            num_filters=growth_rate,
            filter_size=3,
            pad=1,
            stride=1,
            name=name + "_x2")

        if dropout:
littletomatodonkey's avatar
littletomatodonkey 已提交
99
            self.dropout_func = Dropout(p=dropout, mode="downscale_in_infer")
littletomatodonkey's avatar
littletomatodonkey 已提交
100 101 102 103 104 105

    def forward(self, input):
        conv = self.bn_ac_func1(input)
        conv = self.bn_ac_func2(conv)
        if self.dropout:
            conv = self.dropout_func(conv)
littletomatodonkey's avatar
littletomatodonkey 已提交
106
        conv = paddle.concat([input, conv], axis=1)
littletomatodonkey's avatar
littletomatodonkey 已提交
107 108 109
        return conv


littletomatodonkey's avatar
littletomatodonkey 已提交
110
class DenseBlock(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    def __init__(self,
                 num_channels,
                 num_layers,
                 bn_size,
                 growth_rate,
                 dropout,
                 name=None):
        super(DenseBlock, self).__init__()
        self.dropout = dropout

        self.dense_layer_func = []

        pre_channel = num_channels
        for layer in range(num_layers):
            self.dense_layer_func.append(
                self.add_sublayer(
                    "{}_{}".format(name, layer + 1),
                    DenseLayer(
                        num_channels=pre_channel,
                        growth_rate=growth_rate,
                        bn_size=bn_size,
                        dropout=dropout,
                        name=name + '_' + str(layer + 1))))
            pre_channel = pre_channel + growth_rate

    def forward(self, input):
        conv = input
        for func in self.dense_layer_func:
            conv = func(conv)
        return conv


littletomatodonkey's avatar
littletomatodonkey 已提交
143
class TransitionLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
144 145 146 147 148 149 150 151 152 153 154
    def __init__(self, num_channels, num_output_features, name=None):
        super(TransitionLayer, self).__init__()

        self.conv_ac_func = BNACConvLayer(
            num_channels=num_channels,
            num_filters=num_output_features,
            filter_size=1,
            pad=0,
            stride=1,
            name=name)

155
        self.pool2d_avg = AvgPool2D(kernel_size=2, stride=2, padding=0)
littletomatodonkey's avatar
littletomatodonkey 已提交
156 157 158 159 160 161 162

    def forward(self, input):
        y = self.conv_ac_func(input)
        y = self.pool2d_avg(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
163
class ConvBNLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
164 165 166 167 168 169 170 171 172 173 174
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(ConvBNLayer, self).__init__()

175
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
176 177 178
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
littletomatodonkey's avatar
littletomatodonkey 已提交
179 180 181
            stride=stride,
            padding=pad,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
182
            weight_attr=ParamAttr(name=name + "_weights"),
littletomatodonkey's avatar
littletomatodonkey 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
            bias_attr=False)
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

    def forward(self, input):
        y = self._conv(input)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
198
class DenseNet(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
199 200
    def __init__(self, layers=60, bn_size=4, dropout=0, class_dim=1000):
        super(DenseNet, self).__init__()
W
WuHaobo 已提交
201 202 203

        supported_layers = [121, 161, 169, 201, 264]
        assert layers in supported_layers, \
littletomatodonkey's avatar
littletomatodonkey 已提交
204 205
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
W
WuHaobo 已提交
206 207 208 209 210 211 212 213
        densenet_spec = {
            121: (64, 32, [6, 12, 24, 16]),
            161: (96, 48, [6, 12, 36, 24]),
            169: (64, 32, [6, 12, 32, 32]),
            201: (64, 32, [6, 12, 48, 32]),
            264: (64, 32, [6, 12, 64, 48])
        }
        num_init_features, growth_rate, block_config = densenet_spec[layers]
littletomatodonkey's avatar
littletomatodonkey 已提交
214 215 216

        self.conv1_func = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
217 218 219
            num_filters=num_init_features,
            filter_size=7,
            stride=2,
littletomatodonkey's avatar
littletomatodonkey 已提交
220
            pad=3,
W
WuHaobo 已提交
221
            act='relu',
littletomatodonkey's avatar
littletomatodonkey 已提交
222 223
            name="conv1")

224
        self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
littletomatodonkey's avatar
littletomatodonkey 已提交
225 226 227 228 229 230

        self.block_config = block_config

        self.dense_block_func_list = []
        self.transition_func_list = []
        pre_num_channels = num_init_features
W
WuHaobo 已提交
231 232
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
littletomatodonkey's avatar
littletomatodonkey 已提交
233 234 235 236 237 238 239 240 241 242 243
            self.dense_block_func_list.append(
                self.add_sublayer(
                    "db_conv_{}".format(i + 2),
                    DenseBlock(
                        num_channels=pre_num_channels,
                        num_layers=num_layers,
                        bn_size=bn_size,
                        growth_rate=growth_rate,
                        dropout=dropout,
                        name='conv' + str(i + 2))))

W
WuHaobo 已提交
244
            num_features = num_features + num_layers * growth_rate
littletomatodonkey's avatar
littletomatodonkey 已提交
245 246
            pre_num_channels = num_features

W
WuHaobo 已提交
247
            if i != len(block_config) - 1:
littletomatodonkey's avatar
littletomatodonkey 已提交
248 249 250 251 252 253 254 255
                self.transition_func_list.append(
                    self.add_sublayer(
                        "tr_conv{}_blk".format(i + 2),
                        TransitionLayer(
                            num_channels=pre_num_channels,
                            num_output_features=num_features // 2,
                            name='conv' + str(i + 2) + "_blk")))
                pre_num_channels = num_features // 2
W
WuHaobo 已提交
256
                num_features = num_features // 2
littletomatodonkey's avatar
littletomatodonkey 已提交
257 258 259 260

        self.batch_norm = BatchNorm(
            num_features,
            act="relu",
W
WuHaobo 已提交
261 262 263 264
            param_attr=ParamAttr(name='conv5_blk_bn_scale'),
            bias_attr=ParamAttr(name='conv5_blk_bn_offset'),
            moving_mean_name='conv5_blk_bn_mean',
            moving_variance_name='conv5_blk_bn_variance')
littletomatodonkey's avatar
littletomatodonkey 已提交
265

266
        self.pool2d_avg = AdaptiveAvgPool2D(1)
littletomatodonkey's avatar
littletomatodonkey 已提交
267 268 269 270 271 272

        stdv = 1.0 / math.sqrt(num_features * 1.0)

        self.out = Linear(
            num_features,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
273 274
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_weights"),
littletomatodonkey's avatar
littletomatodonkey 已提交
275
            bias_attr=ParamAttr(name="fc_offset"))
W
WuHaobo 已提交
276

littletomatodonkey's avatar
littletomatodonkey 已提交
277 278 279
    def forward(self, input):
        conv = self.conv1_func(input)
        conv = self.pool2d_max(conv)
W
WuHaobo 已提交
280

littletomatodonkey's avatar
littletomatodonkey 已提交
281 282 283 284
        for i, num_layers in enumerate(self.block_config):
            conv = self.dense_block_func_list[i](conv)
            if i != len(self.block_config) - 1:
                conv = self.transition_func_list[i](conv)
W
WuHaobo 已提交
285

littletomatodonkey's avatar
littletomatodonkey 已提交
286 287
        conv = self.batch_norm(conv)
        y = self.pool2d_avg(conv)
L
littletomatodonkey 已提交
288
        y = paddle.flatten(y, start_axis=1, stop_axis=-1)
littletomatodonkey's avatar
littletomatodonkey 已提交
289 290
        y = self.out(y)
        return y
W
WuHaobo 已提交
291

C
cuicheng01 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )

def DenseNet121(pretrained=False, use_ssld=False, **kwargs):
    model = DenseNet(layers=121, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DenseNet121"], use_ssld=use_ssld)
W
WuHaobo 已提交
307 308 309
    return model


C
cuicheng01 已提交
310 311 312
def DenseNet161(pretrained=False, use_ssld=False, **kwargs):
    model = DenseNet(layers=161, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DenseNet161"], use_ssld=use_ssld)
W
WuHaobo 已提交
313 314 315
    return model


C
cuicheng01 已提交
316 317 318
def DenseNet169(pretrained=False, use_ssld=False, **kwargs):
    model = DenseNet(layers=169, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DenseNet169"], use_ssld=use_ssld)
W
WuHaobo 已提交
319 320 321
    return model


C
cuicheng01 已提交
322 323 324
def DenseNet201(pretrained=False, use_ssld=False, **kwargs):
    model = DenseNet(layers=201, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DenseNet201"], use_ssld=use_ssld)
W
WuHaobo 已提交
325 326 327
    return model


C
cuicheng01 已提交
328 329 330
def DenseNet264(pretrained=False, use_ssld=False, **kwargs):
    model = DenseNet(layers=264, **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["DenseNet264"], use_ssld=use_ssld)
W
WuHaobo 已提交
331
    return model