export_model.py 2.5 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

littletomatodonkey's avatar
littletomatodonkey 已提交
15 16 17 18 19 20
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))

W
WuHaobo 已提交
21 22 23 24 25 26 27 28 29 30 31
import argparse

from ppcls.modeling import architectures
import paddle.fluid as fluid


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("-m", "--model", type=str)
    parser.add_argument("-p", "--pretrained_model", type=str)
    parser.add_argument("-o", "--output_path", type=str)
32
    parser.add_argument("--class_dim", type=int, default=1000)
littletomatodonkey's avatar
littletomatodonkey 已提交
33
    parser.add_argument("--img_size", type=int, default=224)
W
WuHaobo 已提交
34 35 36 37

    return parser.parse_args()


littletomatodonkey's avatar
littletomatodonkey 已提交
38
def create_input(img_size=224):
W
WuHaobo 已提交
39
    image = fluid.data(
littletomatodonkey's avatar
littletomatodonkey 已提交
40
        name='image', shape=[None, 3, img_size, img_size], dtype='float32')
W
WuHaobo 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    return image


def create_model(args, model, input, class_dim=1000):
    if args.model == "GoogLeNet":
        out, _, _ = model.net(input=input, class_dim=class_dim)
    else:
        out = model.net(input=input, class_dim=class_dim)
        out = fluid.layers.softmax(out)
    return out


def main():
    args = parse_args()

    model = architectures.__dict__[args.model]()

    place = fluid.CPUPlace()
    exe = fluid.Executor(place)

    startup_prog = fluid.Program()
    infer_prog = fluid.Program()

    with fluid.program_guard(infer_prog, startup_prog):
        with fluid.unique_name.guard():
littletomatodonkey's avatar
littletomatodonkey 已提交
66
            image = create_input(args.img_size)
littletomatodonkey's avatar
littletomatodonkey 已提交
67
            out = create_model(args, model, image, class_dim=args.class_dim)
W
WuHaobo 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

    infer_prog = infer_prog.clone(for_test=True)
    fluid.load(
        program=infer_prog, model_path=args.pretrained_model, executor=exe)

    fluid.io.save_inference_model(
        dirname=args.output_path,
        feeded_var_names=[image.name],
        main_program=infer_prog,
        target_vars=out,
        executor=exe,
        model_filename='model',
        params_filename='params')


if __name__ == "__main__":
    main()