export_model.py 2.3 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse

from ppcls.modeling import architectures
import paddle.fluid as fluid


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("-m", "--model", type=str)
    parser.add_argument("-p", "--pretrained_model", type=str)
    parser.add_argument("-o", "--output_path", type=str)
26
    parser.add_argument("--class_dim", type=int, default=1000)
littletomatodonkey's avatar
littletomatodonkey 已提交
27
    parser.add_argument("--img_size", type=int, default=224)
W
WuHaobo 已提交
28 29 30 31

    return parser.parse_args()


littletomatodonkey's avatar
littletomatodonkey 已提交
32
def create_input(img_size=224):
W
WuHaobo 已提交
33
    image = fluid.data(
littletomatodonkey's avatar
littletomatodonkey 已提交
34
        name='image', shape=[None, 3, img_size, img_size], dtype='float32')
W
WuHaobo 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    return image


def create_model(args, model, input, class_dim=1000):
    if args.model == "GoogLeNet":
        out, _, _ = model.net(input=input, class_dim=class_dim)
    else:
        out = model.net(input=input, class_dim=class_dim)
        out = fluid.layers.softmax(out)
    return out


def main():
    args = parse_args()

    model = architectures.__dict__[args.model]()

    place = fluid.CPUPlace()
    exe = fluid.Executor(place)

    startup_prog = fluid.Program()
    infer_prog = fluid.Program()

    with fluid.program_guard(infer_prog, startup_prog):
        with fluid.unique_name.guard():
littletomatodonkey's avatar
littletomatodonkey 已提交
60
            image = create_input(args.img_size)
littletomatodonkey's avatar
littletomatodonkey 已提交
61
            out = create_model(args, model, image, class_dim=args.class_dim)
W
WuHaobo 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

    infer_prog = infer_prog.clone(for_test=True)
    fluid.load(
        program=infer_prog, model_path=args.pretrained_model, executor=exe)

    fluid.io.save_inference_model(
        dirname=args.output_path,
        feeded_var_names=[image.name],
        main_program=infer_prog,
        target_vars=out,
        executor=exe,
        model_filename='model',
        params_filename='params')


if __name__ == "__main__":
    main()