quick_start_en.md 5.8 KB
Newer Older
S
shippingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
# Trial in 30mins

Based on the flowers102 dataset, it takes only 30 mins to experience PaddleClas, include training varieties of backbone and pretrained model, SSLD distillation, and multiple data augmentation, Please refer to [Installation](install.md) to install at first.


## Preparation

* enter insatallation dir

```
cd path_to_PaddleClas
```

* enter `dataset/flowers102`, download and decompress flowers102 dataset.

```shell
cd dataset/flowers102
wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz
wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat
wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat
tar -xf 102flowers.tgz
```

* create train/val/test label files

```shell
python generate_flowers102_list.py jpg train > train_list.txt
python generate_flowers102_list.py jpg valid > val_list.txt
python generate_flowers102_list.py jpg test > extra_list.txt
cat train_list.txt extra_list.txt > train_extra_list.txt
```

**Note:** In order to offer more data to SSLD training task, train_list.txt and extra_list.txt will merge into train_extra_list.txft

* return `PaddleClas` dir

```
cd ../../
```

## Environment

### Set PYTHONPATH

```bash
export PYTHONPATH=./:$PYTHONPATH
```

### Download pretrained model


```bash
python tools/download.py -a ResNet50_vd -p ./pretrained -d True
python tools/download.py -a ResNet50_vd_ssld -p ./pretrained -d True
python tools/download.py -a MobileNetV3_large_x1_0 -p ./pretrained -d True
```

Paramters:
+ `architecture`(shortname: a): model name.
+ `path`(shortname: p) download path.
+ `decompress`(shortname: d) whether to decompress.



* All experiments are running on the NVIDIA® Tesla® V100 sigle card.


## Training

### Train from scratch

* Train ResNet50_vd

```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
L
littletomatodonkey 已提交
77
    --gpus="0" \
S
shippingwang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    tools/train.py \
        -c ./configs/quick_start/ResNet50_vd.yaml

```

The validation `Top1 Acc` curve is showmn below.

![](../../images/quick_start/r50_vd_acc.png)


### Finetune - ResNet50_vd pretrained model (Acc 79.12\%)

* finetune ResNet50_vd_ model pretrained on the 1000-class Imagenet dataset

```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
L
littletomatodonkey 已提交
95
    --gpus="0" \
S
shippingwang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    tools/train.py \
        -c ./configs/quick_start/ResNet50_vd_finetune.yaml

```

The validation `Top1 Acc` curve is shown below

![](../../images/quick_start/r50_vd_pretrained_acc.png)

Compare with training from scratch, it improve by 65\% to 94.02\%


### SSLD finetune - ResNet50_vd_ssld pretrained model (Acc 82.39\%)

Note: when finetuning model, which has been trained by SSLD, please use smaller learning rate in the middle of net.

```yaml
ARCHITECTURE:
    name: 'ResNet50_vd'
    params:
        lr_mult_list: [0.1, 0.1, 0.2, 0.2, 0.3]
pretrained_model: "./pretrained/ResNet50_vd_ssld_pretrained"
```

Tringing script

```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
L
littletomatodonkey 已提交
125
    --gpus="0" \
S
shippingwang 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139
    tools/train.py \
        -c ./configs/quick_start/ResNet50_vd_ssld_finetune.yaml
```

Compare with finetune on the 79.12% pretrained model, it improve by 0.9% to 95%.


### More architecture - MobileNetV3

Training script

```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
L
littletomatodonkey 已提交
140
    --gpus="0" \
S
shippingwang 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    tools/train.py \
        -c ./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml
```

Compare with ResNet50_vd pretrained model, it decrease by 5% to 90%. Different architecture generates different performance, actually it is a task-oriented decision to apply the best performance model, should consider the inference time, storage, heterogeneous device, etc.


### RandomErasing

Data augmentation works when training data is small.

Training script

```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
L
littletomatodonkey 已提交
157
    --gpus="0" \
S
shippingwang 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    tools/train.py \
        -c ./configs/quick_start/ResNet50_vd_ssld_random_erasing_finetune.yaml
```

It improves by 1.27\% to 96.27\%

* Save ResNet50_vd pretrained model to experience next chapter.

```shell
cp -r output/ResNet50_vd/19/  ./pretrained/flowers102_R50_vd_final/
```

### Distillation

* Use extra_list.txt as unlabeled data, Note:
    * Samples in the `extra_list.txt` and `val_list.txt` don't have intersection
    * Because of in the source code, label information is unused, This is still unlabeled distillation
    * Teacher model use the pretrained_model trained on the flowers102 dataset, and student model use the MobileNetV3_large_x1_0 pretrained model(Acc 75.32\%) trained on the ImageNet1K dataset


```yaml
total_images: 7169
ARCHITECTURE:
    name: 'ResNet50_vd_distill_MobileNetV3_large_x1_0'
pretrained_model:
    - "./pretrained/flowers102_R50_vd_final/ppcls"
    - "./pretrained/MobileNetV3_large_x1_0_pretrained/”
TRAIN:
    file_list: "./dataset/flowers102/train_extra_list.txt"
```

Final training script

```shell
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch \
L
littletomatodonkey 已提交
194
    --gpus="0" \
S
shippingwang 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    tools/train.py \
        -c ./configs/quick_start/R50_vd_distill_MV3_large_x1_0.yaml
```

It significantly imporve by 6.47% to 96.47% with more unlabeled data and teacher model.

### All accuracy


|Configuration | Top1 Acc |
|- |:-: |
| ResNet50_vd.yaml | 0.2735 |
| MobileNetV3_large_x1_0_finetune.yaml | 0.9000 |
| ResNet50_vd_finetune.yaml | 0.9402 |
| ResNet50_vd_ssld_finetune.yaml | 0.9500 |
| ResNet50_vd_ssld_random_erasing_finetune.yaml | 0.9627 |
| R50_vd_distill_MV3_large_x1_0.yaml | 0.9647 |


The whole accuracy curves are shown below


![](../../images/quick_start/all_acc.png)



* **NOTE**: As flowers102 is a small dataset, validatation accuracy maybe float 1%.

* Please refer to [Getting_started](./getting_started) for more details