# Trial in 30mins Based on the flowers102 dataset, it takes only 30 mins to experience PaddleClas, include training varieties of backbone and pretrained model, SSLD distillation, and multiple data augmentation, Please refer to [Installation](install.md) to install at first. ## Preparation * enter insatallation dir ``` cd path_to_PaddleClas ``` * enter `dataset/flowers102`, download and decompress flowers102 dataset. ```shell cd dataset/flowers102 wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat wget https://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat tar -xf 102flowers.tgz ``` * create train/val/test label files ```shell python generate_flowers102_list.py jpg train > train_list.txt python generate_flowers102_list.py jpg valid > val_list.txt python generate_flowers102_list.py jpg test > extra_list.txt cat train_list.txt extra_list.txt > train_extra_list.txt ``` **Note:** In order to offer more data to SSLD training task, train_list.txt and extra_list.txt will merge into train_extra_list.txft * return `PaddleClas` dir ``` cd ../../ ``` ## Environment ### Set PYTHONPATH ```bash export PYTHONPATH=./:$PYTHONPATH ``` ### Download pretrained model ```bash python tools/download.py -a ResNet50_vd -p ./pretrained -d True python tools/download.py -a ResNet50_vd_ssld -p ./pretrained -d True python tools/download.py -a MobileNetV3_large_x1_0 -p ./pretrained -d True ``` Paramters: + `architecture`(shortname: a): model name. + `path`(shortname: p) download path. + `decompress`(shortname: d) whether to decompress. * All experiments are running on the NVIDIA® Tesla® V100 sigle card. ## Training ### Train from scratch * Train ResNet50_vd ```shell export CUDA_VISIBLE_DEVICES=0 python -m paddle.distributed.launch \     --gpus="0" \     tools/train.py \         -c ./configs/quick_start/ResNet50_vd.yaml ``` The validation `Top1 Acc` curve is showmn below. ![](../../images/quick_start/r50_vd_acc.png) ### Finetune - ResNet50_vd pretrained model (Acc 79.12\%) * finetune ResNet50_vd_ model pretrained on the 1000-class Imagenet dataset ```shell export CUDA_VISIBLE_DEVICES=0 python -m paddle.distributed.launch \     --gpus="0" \     tools/train.py \         -c ./configs/quick_start/ResNet50_vd_finetune.yaml ``` The validation `Top1 Acc` curve is shown below ![](../../images/quick_start/r50_vd_pretrained_acc.png) Compare with training from scratch, it improve by 65\% to 94.02\% ### SSLD finetune - ResNet50_vd_ssld pretrained model (Acc 82.39\%) Note: when finetuning model, which has been trained by SSLD, please use smaller learning rate in the middle of net. ```yaml ARCHITECTURE: name: 'ResNet50_vd' params: lr_mult_list: [0.1, 0.1, 0.2, 0.2, 0.3] pretrained_model: "./pretrained/ResNet50_vd_ssld_pretrained" ``` Tringing script ```shell export CUDA_VISIBLE_DEVICES=0 python -m paddle.distributed.launch \     --gpus="0" \     tools/train.py \         -c ./configs/quick_start/ResNet50_vd_ssld_finetune.yaml ``` Compare with finetune on the 79.12% pretrained model, it improve by 0.9% to 95%. ### More architecture - MobileNetV3 Training script ```shell export CUDA_VISIBLE_DEVICES=0 python -m paddle.distributed.launch \     --gpus="0" \     tools/train.py \         -c ./configs/quick_start/MobileNetV3_large_x1_0_finetune.yaml ``` Compare with ResNet50_vd pretrained model, it decrease by 5% to 90%. Different architecture generates different performance, actually it is a task-oriented decision to apply the best performance model, should consider the inference time, storage, heterogeneous device, etc. ### RandomErasing Data augmentation works when training data is small. Training script ```shell export CUDA_VISIBLE_DEVICES=0 python -m paddle.distributed.launch \     --gpus="0" \     tools/train.py \         -c ./configs/quick_start/ResNet50_vd_ssld_random_erasing_finetune.yaml ``` It improves by 1.27\% to 96.27\% * Save ResNet50_vd pretrained model to experience next chapter. ```shell cp -r output/ResNet50_vd/19/ ./pretrained/flowers102_R50_vd_final/ ``` ### Distillation * Use extra_list.txt as unlabeled data, Note: * Samples in the `extra_list.txt` and `val_list.txt` don't have intersection * Because of in the source code, label information is unused, This is still unlabeled distillation * Teacher model use the pretrained_model trained on the flowers102 dataset, and student model use the MobileNetV3_large_x1_0 pretrained model(Acc 75.32\%) trained on the ImageNet1K dataset ```yaml total_images: 7169 ARCHITECTURE: name: 'ResNet50_vd_distill_MobileNetV3_large_x1_0' pretrained_model: - "./pretrained/flowers102_R50_vd_final/ppcls" - "./pretrained/MobileNetV3_large_x1_0_pretrained/” TRAIN: file_list: "./dataset/flowers102/train_extra_list.txt" ``` Final training script ```shell export CUDA_VISIBLE_DEVICES=0 python -m paddle.distributed.launch \     --gpus="0" \     tools/train.py \         -c ./configs/quick_start/R50_vd_distill_MV3_large_x1_0.yaml ``` It significantly imporve by 6.47% to 96.47% with more unlabeled data and teacher model. ### All accuracy |Configuration | Top1 Acc | |- |:-: | | ResNet50_vd.yaml | 0.2735 | | MobileNetV3_large_x1_0_finetune.yaml | 0.9000 | | ResNet50_vd_finetune.yaml | 0.9402 | | ResNet50_vd_ssld_finetune.yaml | 0.9500 | | ResNet50_vd_ssld_random_erasing_finetune.yaml | 0.9627 | | R50_vd_distill_MV3_large_x1_0.yaml | 0.9647 | The whole accuracy curves are shown below ![](../../images/quick_start/all_acc.png) * **NOTE**: As flowers102 is a small dataset, validatation accuracy maybe float 1%. * Please refer to [Getting_started](./getting_started) for more details