resnext.py 7.4 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import numpy as np
W
WuHaobo 已提交
20
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22 23 24 25
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
26 27

import math
W
WuHaobo 已提交
28 29

__all__ = [
30 31
    "ResNeXt50_32x4d", "ResNeXt50_64x4d", "ResNeXt101_32x4d",
    "ResNeXt101_64x4d", "ResNeXt152_32x4d", "ResNeXt152_64x4d"
W
WuHaobo 已提交
32 33 34
]


littletomatodonkey's avatar
littletomatodonkey 已提交
35
class ConvBNLayer(nn.Layer):
36 37 38 39 40 41 42 43 44
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()
W
WuHaobo 已提交
45

littletomatodonkey's avatar
littletomatodonkey 已提交
46 47 48 49
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
W
WuHaobo 已提交
50 51 52
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
53
            weight_attr=ParamAttr(name=name + "_weights"),
54
            bias_attr=False)
W
WuHaobo 已提交
55 56 57 58
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
59 60
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
61 62 63 64
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
65 66 67 68 69 70 71 72
            moving_variance_name=bn_name + '_variance')

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
73
class BottleneckBlock(nn.Layer):
74 75 76 77 78 79 80 81 82 83 84
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 cardinality,
                 shortcut=True,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
85 86 87 88
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
89 90
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
91 92 93
            num_filters=num_filters,
            filter_size=3,
            groups=cardinality,
94
            stride=stride,
W
WuHaobo 已提交
95 96
            act='relu',
            name=name + "_branch2b")
97 98 99
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 2 if cardinality == 32 else num_filters,
W
WuHaobo 已提交
100 101 102 103
            filter_size=1,
            act=None,
            name=name + "_branch2c")

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 2
                if cardinality == 32 else num_filters,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

littletomatodonkey's avatar
littletomatodonkey 已提交
125
        y = paddle.elementwise_add(x=short, y=conv2, act='relu')
littletomatodonkey's avatar
littletomatodonkey 已提交
126
        return y
127

W
WuHaobo 已提交
128

littletomatodonkey's avatar
littletomatodonkey 已提交
129
class ResNeXt(nn.Layer):
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    def __init__(self, layers=50, class_dim=1000, cardinality=32):
        super(ResNeXt, self).__init__()

        self.layers = layers
        self.cardinality = cardinality
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
        supported_cardinality = [32, 64]
        assert cardinality in supported_cardinality, \
            "supported cardinality is {} but input cardinality is {}" \
            .format(supported_cardinality, cardinality)
        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_channels = [64, 256, 512, 1024]
        num_filters = [128, 256, 512,
                       1024] if cardinality == 32 else [256, 512, 1024, 2048]
W
WuHaobo 已提交
152

153 154 155 156 157 158 159
        self.conv = ConvBNLayer(
            num_channels=3,
            num_filters=64,
            filter_size=7,
            stride=2,
            act='relu',
            name="res_conv1")
littletomatodonkey's avatar
littletomatodonkey 已提交
160
        self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
W
WuHaobo 已提交
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        self.block_list = []
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                if layers in [101, 152] and block == 2:
                    if i == 0:
                        conv_name = "res" + str(block + 2) + "a"
                    else:
                        conv_name = "res" + str(block + 2) + "b" + str(i)
                else:
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        num_channels=num_channels[block] if i == 0 else
                        num_filters[block] * int(64 // self.cardinality),
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        cardinality=self.cardinality,
                        shortcut=shortcut,
                        name=conv_name))
                self.block_list.append(bottleneck_block)
                shortcut = True

littletomatodonkey's avatar
littletomatodonkey 已提交
186
        self.pool2d_avg = AdaptiveAvgPool2d(1)
187 188 189 190 191 192 193 194

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
195 196
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_weights"),
197 198 199 200 201 202 203 204
            bias_attr=ParamAttr(name="fc_offset"))

    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
205
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
206 207 208 209 210 211
        y = self.out(y)
        return y


def ResNeXt50_32x4d(**args):
    model = ResNeXt(layers=50, cardinality=32, **args)
W
WuHaobo 已提交
212 213 214
    return model


215 216
def ResNeXt50_64x4d(**args):
    model = ResNeXt(layers=50, cardinality=64, **args)
W
WuHaobo 已提交
217 218 219
    return model


220 221
def ResNeXt101_32x4d(**args):
    model = ResNeXt(layers=101, cardinality=32, **args)
W
WuHaobo 已提交
222 223 224
    return model


225 226
def ResNeXt101_64x4d(**args):
    model = ResNeXt(layers=101, cardinality=64, **args)
W
WuHaobo 已提交
227 228 229
    return model


230 231
def ResNeXt152_32x4d(**args):
    model = ResNeXt(layers=152, cardinality=32, **args)
W
WuHaobo 已提交
232 233 234
    return model


235 236
def ResNeXt152_64x4d(**args):
    model = ResNeXt(layers=152, cardinality=64, **args)
W
WuHaobo 已提交
237
    return model