randaugment.py 13.4 KB
Newer Older
F
Felix 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
F
Felix 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This code is based on https://github.com/heartInsert/randaugment
G
gaotingquan 已提交
16
# reference: https://arxiv.org/abs/1909.13719
F
Felix 已提交
17 18

import random
19
from .operators import RawColorJitter
Y
Yang Nie 已提交
20
from .timm_autoaugment import _pil_interp
21
from paddle.vision.transforms import transforms as T
F
Felix 已提交
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
import numpy as np
from PIL import Image, ImageEnhance, ImageOps


def solarize_add(img, add, thresh=128, **__):
    lut = []
    for i in range(256):
        if i < thresh:
            lut.append(min(255, i + add))
        else:
            lut.append(i)
    if img.mode in ("L", "RGB"):
        if img.mode == "RGB" and len(lut) == 256:
            lut = lut + lut + lut
        return img.point(lut)
    else:
        return img


def cutout(image, pad_size, replace=0):
    image_np = np.array(image)
    image_height, image_width, _ = image_np.shape

    # Sample the center location in the image where the zero mask will be applied.
    cutout_center_height = np.random.randint(0, image_height + 1)
    cutout_center_width = np.random.randint(0, image_width + 1)

    lower_pad = np.maximum(0, cutout_center_height - pad_size)
    upper_pad = np.maximum(0, image_height - cutout_center_height - pad_size)
    left_pad = np.maximum(0, cutout_center_width - pad_size)
    right_pad = np.maximum(0, image_width - cutout_center_width - pad_size)

    cutout_shape = [
        image_height - (lower_pad + upper_pad),
        image_width - (left_pad + right_pad)
    ]
    padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
    mask = np.pad(np.zeros(
        cutout_shape, dtype=image_np.dtype),
                  padding_dims,
                  constant_values=1)
    mask = np.expand_dims(mask, -1)
    mask = np.tile(mask, [1, 1, 3])
    image_np = np.where(
        np.equal(mask, 0),
        np.full_like(
            image_np, fill_value=replace, dtype=image_np.dtype),
        image_np)
    return Image.fromarray(image_np)

F
Felix 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

class RandAugment(object):
    def __init__(self, num_layers=2, magnitude=5, fillcolor=(128, 128, 128)):
        self.num_layers = num_layers
        self.magnitude = magnitude
        self.max_level = 10

        abso_level = self.magnitude / self.max_level
        self.level_map = {
            "shearX": 0.3 * abso_level,
            "shearY": 0.3 * abso_level,
            "translateX": 150.0 / 331 * abso_level,
            "translateY": 150.0 / 331 * abso_level,
            "rotate": 30 * abso_level,
            "color": 0.9 * abso_level,
            "posterize": int(4.0 * abso_level),
            "solarize": 256.0 * abso_level,
            "contrast": 0.9 * abso_level,
            "sharpness": 0.9 * abso_level,
            "brightness": 0.9 * abso_level,
            "autocontrast": 0,
            "equalize": 0,
            "invert": 0
        }

        # from https://stackoverflow.com/questions/5252170/
        # specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand
        def rotate_with_fill(img, magnitude):
            rot = img.convert("RGBA").rotate(magnitude)
            return Image.composite(rot,
                                   Image.new("RGBA", rot.size, (128, ) * 4),
                                   rot).convert(img.mode)

        rnd_ch_op = random.choice

        self.func = {
            "shearX": lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE,
                (1, magnitude * rnd_ch_op([-1, 1]), 0, 0, 1, 0),
                Image.BICUBIC,
                fillcolor=fillcolor),
            "shearY": lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE,
                (1, 0, 0, magnitude * rnd_ch_op([-1, 1]), 1, 0),
                Image.BICUBIC,
                fillcolor=fillcolor),
            "translateX": lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE,
                (1, 0, magnitude * img.size[0] * rnd_ch_op([-1, 1]), 0, 1, 0),
                fillcolor=fillcolor),
            "translateY": lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE,
                (1, 0, 0, 0, 1, magnitude * img.size[1] * rnd_ch_op([-1, 1])),
                fillcolor=fillcolor),
            "rotate": lambda img, magnitude: rotate_with_fill(img, magnitude),
            "color": lambda img, magnitude: ImageEnhance.Color(img).enhance(
                1 + magnitude * rnd_ch_op([-1, 1])),
            "posterize": lambda img, magnitude:
                ImageOps.posterize(img, magnitude),
            "solarize": lambda img, magnitude:
                ImageOps.solarize(img, magnitude),
            "contrast": lambda img, magnitude:
                ImageEnhance.Contrast(img).enhance(
                    1 + magnitude * rnd_ch_op([-1, 1])),
            "sharpness": lambda img, magnitude:
                ImageEnhance.Sharpness(img).enhance(
                    1 + magnitude * rnd_ch_op([-1, 1])),
            "brightness": lambda img, magnitude:
                ImageEnhance.Brightness(img).enhance(
                    1 + magnitude * rnd_ch_op([-1, 1])),
147
            "autocontrast": lambda img, _:
F
Felix 已提交
148
                ImageOps.autocontrast(img),
149 150
            "equalize": lambda img, _: ImageOps.equalize(img),
            "invert": lambda img, _: ImageOps.invert(img)
F
Felix 已提交
151 152 153 154 155 156 157 158
        }

    def __call__(self, img):
        avaiable_op_names = list(self.level_map.keys())
        for layer_num in range(self.num_layers):
            op_name = np.random.choice(avaiable_op_names)
            img = self.func[op_name](img, self.level_map[op_name])
        return img
159 160 161 162 163 164 165 166 167 168 169 170 171


class RandomApply(object):
    def __init__(self, p, transforms):
        self.p = p
        ts = []
        for t in transforms:
            for key in t.keys():
                ts.append(eval(key)(**t[key]))

        self.trans = T.Compose(ts)

    def __call__(self, img):
Z
zh-hike 已提交
172 173
        if self.p < np.random.rand(1):
            return img
174
        timg = self.trans(img)
175 176 177 178 179 180 181
        return timg


## RandAugment_EfficientNetV2 code below ##
class RandAugmentV2(RandAugment):
    """Customed RandAugment for EfficientNetV2"""

182 183 184 185 186
    def __init__(self,
                 num_layers=2,
                 magnitude=5,
                 progress_magnitude=None,
                 fillcolor=(128, 128, 128)):
187
        super().__init__(num_layers, magnitude, fillcolor)
188 189
        self.progress_magnitude = progress_magnitude
        abso_level = self.magnitude / self.max_level
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        self.level_map = {
            "shearX": 0.3 * abso_level,
            "shearY": 0.3 * abso_level,
            "translateX": 100.0 * abso_level,
            "translateY": 100.0 * abso_level,
            "rotate": 30 * abso_level,
            "color": 1.8 * abso_level + 0.1,
            "posterize": int(4.0 * abso_level),
            "solarize": int(256.0 * abso_level),
            "solarize_add": int(110.0 * abso_level),
            "contrast": 1.8 * abso_level + 0.1,
            "sharpness": 1.8 * abso_level + 0.1,
            "brightness": 1.8 * abso_level + 0.1,
            "autocontrast": 0,
            "equalize": 0,
            "invert": 0,
            "cutout": int(40 * abso_level)
        }

209 210
        # from https://stackoverflow.com/questions/5252170/
        # specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        def rotate_with_fill(img, magnitude):
            rot = img.convert("RGBA").rotate(magnitude)
            return Image.composite(rot,
                                   Image.new("RGBA", rot.size, (128, ) * 4),
                                   rot).convert(img.mode)

        rnd_ch_op = random.choice

        self.func = {
            "shearX": lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE,
                (1, magnitude * rnd_ch_op([-1, 1]), 0, 0, 1, 0),
                Image.NEAREST,
                fillcolor=fillcolor),
            "shearY": lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE,
                (1, 0, 0, magnitude * rnd_ch_op([-1, 1]), 1, 0),
                Image.NEAREST,
                fillcolor=fillcolor),
            "translateX": lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE,
                (1, 0, magnitude * rnd_ch_op([-1, 1]), 0, 1, 0),
                Image.NEAREST,
                fillcolor=fillcolor),
            "translateY": lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE,
                (1, 0, 0, 0, 1, magnitude * rnd_ch_op([-1, 1])),
                Image.NEAREST,
                fillcolor=fillcolor),
            "rotate": lambda img, magnitude: rotate_with_fill(img, magnitude * rnd_ch_op([-1, 1])),
            "color": lambda img, magnitude: ImageEnhance.Color(img).enhance(magnitude),
            "posterize": lambda img, magnitude:
                ImageOps.posterize(img, magnitude),
            "solarize": lambda img, magnitude:
                ImageOps.solarize(img, magnitude),
            "solarize_add": lambda img, magnitude:
                solarize_add(img, magnitude),
            "contrast": lambda img, magnitude:
                ImageEnhance.Contrast(img).enhance(magnitude),
            "sharpness": lambda img, magnitude:
                ImageEnhance.Sharpness(img).enhance(magnitude),
            "brightness": lambda img, magnitude:
                ImageEnhance.Brightness(img).enhance(magnitude),
            "autocontrast": lambda img, _:
                ImageOps.autocontrast(img),
            "equalize": lambda img, _: ImageOps.equalize(img),
            "invert": lambda img, _: ImageOps.invert(img),
            "cutout": lambda img, magnitude: cutout(img, magnitude, replace=fillcolor[0])
        }
Y
Yang Nie 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347


class RandAugmentV3(RandAugment):
    """Customed RandAugment for MobileViTv2"""

    def __init__(self,
                 num_layers=2,
                 magnitude=3,
                 fillcolor=(0, 0, 0),
                 interpolation="bicubic"):
        self.num_layers = num_layers
        self.magnitude = magnitude
        self.max_level = 10
        interpolation = _pil_interp(interpolation)

        abso_level = self.magnitude / self.max_level
        self.level_map = {
            "shearX": 0.3 * abso_level,
            "shearY": 0.3 * abso_level,
            "translateX": 150.0 / 331.0 * abso_level,
            "translateY": 150.0 / 331.0 * abso_level,
            "rotate": 30 * abso_level,
            "color": 0.9 * abso_level,
            "posterize": 8 - int(4.0 * abso_level),
            "solarize": 255.0 * (1 - abso_level),
            "contrast": 0.9 * abso_level,
            "sharpness": 0.9 * abso_level,
            "brightness": 0.9 * abso_level,
            "autocontrast": 0,
            "equalize": 0,
            "invert": 0
        }

        rnd_ch_op = random.choice

        self.func = {
            "shearX": lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE,
                (1, magnitude * rnd_ch_op([-1, 1]), 0, 0, 1, 0),
                interpolation,
                fillcolor=fillcolor),
            "shearY": lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE,
                (1, 0, 0, magnitude * rnd_ch_op([-1, 1]), 1, 0),
                interpolation,
                fillcolor=fillcolor),
            "translateX": lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE,
                (1, 0, magnitude * img.size[0] * rnd_ch_op([-1, 1]), 0, 1, 0),
                interpolation,
                fillcolor=fillcolor),
            "translateY": lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE,
                (1, 0, 0, 0, 1, magnitude * img.size[1] * rnd_ch_op([-1, 1])),
                interpolation,
                fillcolor=fillcolor),
            "rotate": lambda img, magnitude: img.rotate(
                magnitude * rnd_ch_op([-1, 1]),
                interpolation,
                fillcolor=fillcolor),
            "color": lambda img, magnitude: ImageEnhance.Color(img).enhance(
                1 + magnitude * rnd_ch_op([-1, 1])),
            "posterize": lambda img, magnitude:
                ImageOps.posterize(img, magnitude),
            "solarize": lambda img, magnitude:
                ImageOps.solarize(img, magnitude),
            "contrast": lambda img, magnitude:
                ImageEnhance.Contrast(img).enhance(
                    1 + magnitude * rnd_ch_op([-1, 1])),
            "sharpness": lambda img, magnitude:
                ImageEnhance.Sharpness(img).enhance(
                    1 + magnitude * rnd_ch_op([-1, 1])),
            "brightness": lambda img, magnitude:
                ImageEnhance.Brightness(img).enhance(
                    1 + magnitude * rnd_ch_op([-1, 1])),
            "autocontrast": lambda img, _:
                ImageOps.autocontrast(img),
            "equalize": lambda img, _: ImageOps.equalize(img),
            "invert": lambda img, _: ImageOps.invert(img)
        }