batch_operators.py 18.9 KB
Newer Older
F
Felix 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
F
Felix 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
19 20
import random

F
Felix 已提交
21 22
import numpy as np

23
from ppcls.utils import logger
F
Felix 已提交
24 25
from ppcls.data.preprocess.ops.fmix import sample_mask

悟、's avatar
悟、 已提交
26 27 28
import paddle
import paddle.nn.functional as F

F
Felix 已提交
29 30 31

class BatchOperator(object):
    """ BatchOperator """
32

F
Felix 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    def __init__(self, *args, **kwargs):
        pass

    def _unpack(self, batch):
        """ _unpack """
        assert isinstance(batch, list), \
                'batch should be a list filled with tuples (img, label)'
        bs = len(batch)
        assert bs > 0, 'size of the batch data should > 0'
        #imgs, labels = list(zip(*batch))
        imgs = []
        labels = []
        for item in batch:
            imgs.append(item[0])
            labels.append(item[1])
        return np.array(imgs), np.array(labels), bs

G
gaotingquan 已提交
50 51 52 53 54 55 56 57
    def _one_hot(self, targets):
        return np.eye(self.class_num, dtype="float32")[targets]

    def _mix_target(self, targets0, targets1, lam):
        one_hots0 = self._one_hot(targets0)
        one_hots1 = self._one_hot(targets1)
        return one_hots0 * lam + one_hots1 * (1 - lam)

F
Felix 已提交
58 59 60 61 62
    def __call__(self, batch):
        return batch


class MixupOperator(BatchOperator):
63
    """ Mixup operator
G
gaotingquan 已提交
64 65 66
    reference: https://arxiv.org/abs/1710.09412

    """
67

G
gaotingquan 已提交
68
    def __init__(self, class_num, alpha: float=1.):
69 70 71
        """Build Mixup operator

        Args:
72
            alpha (float, optional): The parameter alpha of mixup. Defaults to 1..
73 74

        Raises:
75
            Exception: The value of parameter is illegal.
76
        """
77
        if alpha <= 0:
78
            raise Exception(
79
                f"Parameter \"alpha\" of Mixup should be greater than 0. \"alpha\": {alpha}."
80
            )
G
gaotingquan 已提交
81 82 83 84 85
        if not class_num:
            msg = "Please set \"Arch.class_num\" in config if use \"MixupOperator\"."
            logger.error(Exception(msg))
            raise Exception(msg)

86
        self._alpha = alpha
G
gaotingquan 已提交
87
        self.class_num = class_num
88

89 90
    def __call__(self, batch):
        imgs, labels, bs = self._unpack(batch)
91
        idx = np.random.permutation(bs)
92
        lam = np.random.beta(self._alpha, self._alpha)
F
Felix 已提交
93
        imgs = lam * imgs + (1 - lam) * imgs[idx]
G
gaotingquan 已提交
94 95
        targets = self._mix_target(labels, labels[idx], lam)
        return list(zip(imgs, targets))
F
Felix 已提交
96

97 98

class CutmixOperator(BatchOperator):
G
gaotingquan 已提交
99 100 101 102
    """ Cutmix operator
    reference: https://arxiv.org/abs/1905.04899

    """
103

G
gaotingquan 已提交
104
    def __init__(self, class_num, alpha=0.2):
105 106 107 108 109 110 111 112 113 114 115 116
        """Build Cutmix operator

        Args:
            alpha (float, optional): The parameter alpha of cutmix. Defaults to 0.2.

        Raises:
            Exception: The value of parameter is illegal.
        """
        if alpha <= 0:
            raise Exception(
                f"Parameter \"alpha\" of Cutmix should be greater than 0. \"alpha\": {alpha}."
            )
G
gaotingquan 已提交
117 118 119 120 121
        if not class_num:
            msg = "Please set \"Arch.class_num\" in config if use \"CutmixOperator\"."
            logger.error(Exception(msg))
            raise Exception(msg)

122
        self._alpha = alpha
G
gaotingquan 已提交
123
        self.class_num = class_num
124

F
Felix 已提交
125 126 127 128 129
    def _rand_bbox(self, size, lam):
        """ _rand_bbox """
        w = size[2]
        h = size[3]
        cut_rat = np.sqrt(1. - lam)
130 131
        cut_w = int(w * cut_rat)
        cut_h = int(h * cut_rat)
F
Felix 已提交
132 133 134 135 136 137 138 139 140 141 142 143

        # uniform
        cx = np.random.randint(w)
        cy = np.random.randint(h)

        bbx1 = np.clip(cx - cut_w // 2, 0, w)
        bby1 = np.clip(cy - cut_h // 2, 0, h)
        bbx2 = np.clip(cx + cut_w // 2, 0, w)
        bby2 = np.clip(cy + cut_h // 2, 0, h)

        return bbx1, bby1, bbx2, bby2

144 145
    def __call__(self, batch):
        imgs, labels, bs = self._unpack(batch)
146
        idx = np.random.permutation(bs)
147
        lam = np.random.beta(self._alpha, self._alpha)
F
Felix 已提交
148 149 150 151 152

        bbx1, bby1, bbx2, bby2 = self._rand_bbox(imgs.shape, lam)
        imgs[:, :, bbx1:bbx2, bby1:bby2] = imgs[idx, :, bbx1:bbx2, bby1:bby2]
        lam = 1 - (float(bbx2 - bbx1) * (bby2 - bby1) /
                   (imgs.shape[-2] * imgs.shape[-1]))
G
gaotingquan 已提交
153 154
        targets = self._mix_target(labels, labels[idx], lam)
        return list(zip(imgs, targets))
F
Felix 已提交
155 156 157


class FmixOperator(BatchOperator):
158
    """ Fmix operator
G
gaotingquan 已提交
159
    reference: https://arxiv.org/abs/2002.12047
160

G
gaotingquan 已提交
161
    """
162

G
gaotingquan 已提交
163 164 165 166 167 168 169 170 171 172 173
    def __init__(self,
                 class_num,
                 alpha=1,
                 decay_power=3,
                 max_soft=0.,
                 reformulate=False):
        if not class_num:
            msg = "Please set \"Arch.class_num\" in config if use \"FmixOperator\"."
            logger.error(Exception(msg))
            raise Exception(msg)

F
Felix 已提交
174 175 176 177
        self._alpha = alpha
        self._decay_power = decay_power
        self._max_soft = max_soft
        self._reformulate = reformulate
G
gaotingquan 已提交
178
        self.class_num = class_num
F
Felix 已提交
179 180 181

    def __call__(self, batch):
        imgs, labels, bs = self._unpack(batch)
182
        idx = np.random.permutation(bs)
F
Felix 已提交
183 184 185 186
        size = (imgs.shape[2], imgs.shape[3])
        lam, mask = sample_mask(self._alpha, self._decay_power, \
                size, self._max_soft, self._reformulate)
        imgs = mask * imgs + (1 - mask) * imgs[idx]
G
gaotingquan 已提交
187 188
        targets = self._mix_target(labels, labels[idx], lam)
        return list(zip(imgs, targets))
189 190 191 192 193


class OpSampler(object):
    """ Sample a operator from  """

G
gaotingquan 已提交
194
    def __init__(self, class_num, **op_dict):
195 196 197 198 199
        """Build OpSampler

        Raises:
            Exception: The parameter \"prob\" of operator(s) are be set error.
        """
G
gaotingquan 已提交
200 201 202 203 204
        if not class_num:
            msg = "Please set \"Arch.class_num\" in config if use \"OpSampler\"."
            logger.error(Exception(msg))
            raise Exception(msg)

205 206
        if len(op_dict) < 1:
            msg = f"ConfigWarning: No operator in \"OpSampler\". \"OpSampler\" has been skipped."
G
gaotingquan 已提交
207
            logger.warning(msg)
208 209 210 211 212 213 214 215 216 217

        self.ops = {}
        total_prob = 0
        for op_name in op_dict:
            param = op_dict[op_name]
            if "prob" not in param:
                msg = f"ConfigWarning: Parameter \"prob\" should be set when use operator in \"OpSampler\". The operator \"{op_name}\"'s prob has been set \"0\"."
                logger.warning(msg)
            prob = param.pop("prob", 0)
            total_prob += prob
G
gaotingquan 已提交
218
            param.update({"class_num": class_num})
219 220 221 222 223
            op = eval(op_name)(**param)
            self.ops.update({op: prob})

        if total_prob > 1:
            msg = f"ConfigError: The total prob of operators in \"OpSampler\" should be less 1."
G
gaotingquan 已提交
224
            logger.error(Exception(msg))
225 226 227 228 229 230 231 232 233 234
            raise Exception(msg)

        # add "None Op" when total_prob < 1, "None Op" do nothing
        self.ops[None] = 1 - total_prob

    def __call__(self, batch):
        op = random.choices(
            list(self.ops.keys()), weights=list(self.ops.values()), k=1)[0]
        # return batch directly when None Op
        return op(batch) if op else batch
悟、's avatar
悟、 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501


class MixupCutmixHybrid(object):
    """ Mixup/Cutmix that applies different params to each element or whole batch

    Args:
        mixup_alpha (float): mixup alpha value, mixup is active if > 0.
        cutmix_alpha (float): cutmix alpha value, cutmix is active if > 0.
        cutmix_minmax (List[float]): cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None.
        prob (float): probability of applying mixup or cutmix per batch or element
        switch_prob (float): probability of switching to cutmix instead of mixup when both are active
        mode (str): how to apply mixup/cutmix params (per 'batch', 'pair' (pair of elements), 'elem' (element)
        correct_lam (bool): apply lambda correction when cutmix bbox clipped by image borders
        label_smoothing (float): apply label smoothing to the mixed target tensor
        num_classes (int): number of classes for target
    """

    def __init__(self,
                 mixup_alpha=1.,
                 cutmix_alpha=0.,
                 cutmix_minmax=None,
                 prob=1.0,
                 switch_prob=0.5,
                 mode='batch',
                 correct_lam=True,
                 label_smoothing=0.1,
                 num_classes=4):
        self.mixup_alpha = mixup_alpha
        self.cutmix_alpha = cutmix_alpha
        self.cutmix_minmax = cutmix_minmax
        if self.cutmix_minmax is not None:
            assert len(self.cutmix_minmax) == 2
            # force cutmix alpha == 1.0 when minmax active to keep logic simple & safe
            self.cutmix_alpha = 1.0
        self.mix_prob = prob
        self.switch_prob = switch_prob
        self.label_smoothing = label_smoothing
        self.num_classes = num_classes
        self.mode = mode
        self.correct_lam = correct_lam  # correct lambda based on clipped area for cutmix
        self.mixup_enabled = True  # set to false to disable mixing (intended tp be set by train loop)

    def _one_hot(self, x, num_classes, on_value=1., off_value=0.):
        x = paddle.cast(x, dtype='int64')
        on_value = paddle.full([x.shape[0], num_classes], on_value)
        off_value = paddle.full([x.shape[0], num_classes], off_value)
        return paddle.where(
            F.one_hot(x, num_classes) == 1, on_value, off_value)

    def _mixup_target(self, target, num_classes, lam=1., smoothing=0.0):
        off_value = smoothing / num_classes
        on_value = 1. - smoothing + off_value
        y1 = self._one_hot(
            target,
            num_classes,
            on_value=on_value,
            off_value=off_value, )
        y2 = self._one_hot(
            target.flip(0),
            num_classes,
            on_value=on_value,
            off_value=off_value)
        return y1 * lam + y2 * (1. - lam)

    def _rand_bbox(self, img_shape, lam, margin=0., count=None):
        """ Standard CutMix bounding-box
        Generates a random square bbox based on lambda value. This impl includes
        support for enforcing a border margin as percent of bbox dimensions.

        Args:
            img_shape (tuple): Image shape as tuple
            lam (float): Cutmix lambda value
            margin (float): Percentage of bbox dimension to enforce as margin (reduce amount of box outside image)
            count (int): Number of bbox to generate
        """
        ratio = np.sqrt(1 - lam)
        img_h, img_w = img_shape[-2:]
        cut_h, cut_w = int(img_h * ratio), int(img_w * ratio)
        margin_y, margin_x = int(margin * cut_h), int(margin * cut_w)
        cy = np.random.randint(0 + margin_y, img_h - margin_y, size=count)
        cx = np.random.randint(0 + margin_x, img_w - margin_x, size=count)
        yl = np.clip(cy - cut_h // 2, 0, img_h)
        yh = np.clip(cy + cut_h // 2, 0, img_h)
        xl = np.clip(cx - cut_w // 2, 0, img_w)
        xh = np.clip(cx + cut_w // 2, 0, img_w)
        return yl, yh, xl, xh

    def _rand_bbox_minmax(self, img_shape, minmax, count=None):
        """ Min-Max CutMix bounding-box
        Inspired by Darknet cutmix impl, generates a random rectangular bbox
        based on min/max percent values applied to each dimension of the input image.

        Typical defaults for minmax are usually in the  .2-.3 for min and .8-.9 range for max.

        Args:
            img_shape (tuple): Image shape as tuple
            minmax (tuple or list): Min and max bbox ratios (as percent of image size)
            count (int): Number of bbox to generate
        """
        assert len(minmax) == 2
        img_h, img_w = img_shape[-2:]
        cut_h = np.random.randint(
            int(img_h * minmax[0]), int(img_h * minmax[1]), size=count)
        cut_w = np.random.randint(
            int(img_w * minmax[0]), int(img_w * minmax[1]), size=count)
        yl = np.random.randint(0, img_h - cut_h, size=count)
        xl = np.random.randint(0, img_w - cut_w, size=count)
        yu = yl + cut_h
        xu = xl + cut_w
        return yl, yu, xl, xu

    def _cutmix_bbox_and_lam(self,
                             img_shape,
                             lam,
                             ratio_minmax=None,
                             correct_lam=True,
                             count=None):
        """ Generate bbox and apply lambda correction.
        """
        if ratio_minmax is not None:
            yl, yu, xl, xu = self._rand_bbox_minmax(
                img_shape, ratio_minmax, count=count)
        else:
            yl, yu, xl, xu = self._rand_bbox(img_shape, lam, count=count)
        if correct_lam or ratio_minmax is not None:
            bbox_area = (yu - yl) * (xu - xl)
            lam = 1. - bbox_area / float(img_shape[-2] * img_shape[-1])
        return (yl, yu, xl, xu), lam

    def _params_per_elem(self, batch_size):
        lam = np.ones(batch_size, dtype=np.float32)
        use_cutmix = np.zeros(batch_size, dtype=np.bool)
        if self.mixup_enabled:
            if self.mixup_alpha > 0. and self.cutmix_alpha > 0.:
                use_cutmix = np.random.rand(batch_size) < self.switch_prob
                lam_mix = np.where(
                    use_cutmix,
                    np.random.beta(
                        self.cutmix_alpha, self.cutmix_alpha, size=batch_size),
                    np.random.beta(
                        self.mixup_alpha, self.mixup_alpha, size=batch_size))
            elif self.mixup_alpha > 0.:
                lam_mix = np.random.beta(
                    self.mixup_alpha, self.mixup_alpha, size=batch_size)
            elif self.cutmix_alpha > 0.:
                use_cutmix = np.ones(batch_size, dtype=np.bool)
                lam_mix = np.random.beta(
                    self.cutmix_alpha, self.cutmix_alpha, size=batch_size)
            else:
                assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true."
            lam = np.where(
                np.random.rand(batch_size) < self.mix_prob,
                lam_mix.astype(np.float32), lam)
        return lam, use_cutmix

    def _params_per_batch(self):
        lam = 1.
        use_cutmix = False
        if self.mixup_enabled and np.random.rand() < self.mix_prob:
            if self.mixup_alpha > 0. and self.cutmix_alpha > 0.:
                use_cutmix = np.random.rand() < self.switch_prob
                lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) if use_cutmix else \
                    np.random.beta(self.mixup_alpha, self.mixup_alpha)
            elif self.mixup_alpha > 0.:
                lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha)
            elif self.cutmix_alpha > 0.:
                use_cutmix = True
                lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha)
            else:
                assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true."
            lam = float(lam_mix)
        return lam, use_cutmix

    def _mix_elem(self, x):
        batch_size = len(x)
        lam_batch, use_cutmix = self._params_per_elem(batch_size)
        x_orig = x.clone(
        )  # need to keep an unmodified original for mixing source
        for i in range(batch_size):
            j = batch_size - i - 1
            lam = lam_batch[i]
            if lam != 1.:
                if use_cutmix[i]:
                    (yl, yh, xl, xh), lam = self._cutmix_bbox_and_lam(
                        x[i].shape,
                        lam,
                        ratio_minmax=self.cutmix_minmax,
                        correct_lam=self.correct_lam)
                    if yl < yh and xl < xh:
                        x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh]
                    lam_batch[i] = lam
                else:
                    x[i] = x[i] * lam + x_orig[j] * (1 - lam)
        return paddle.to_tensor(lam_batch, dtype=x.dtype).unsqueeze(1)

    def _mix_pair(self, x):
        batch_size = len(x)
        lam_batch, use_cutmix = self._params_per_elem(batch_size // 2)
        x_orig = x.clone(
        )  # need to keep an unmodified original for mixing source
        for i in range(batch_size // 2):
            j = batch_size - i - 1
            lam = lam_batch[i]
            if lam != 1.:
                if use_cutmix[i]:
                    (yl, yh, xl, xh), lam = self._cutmix_bbox_and_lam(
                        x[i].shape,
                        lam,
                        ratio_minmax=self.cutmix_minmax,
                        correct_lam=self.correct_lam)
                    if yl < yh and xl < xh:
                        x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh]
                        x[j][:, yl:yh, xl:xh] = x_orig[i][:, yl:yh, xl:xh]
                    lam_batch[i] = lam
                else:
                    x[i] = x[i] * lam + x_orig[j] * (1 - lam)
                    x[j] = x[j] * lam + x_orig[i] * (1 - lam)
        lam_batch = np.concatenate((lam_batch, lam_batch[::-1]))
        return paddle.to_tensor(lam_batch, dtype=x.dtype).unsqueeze(1)

    def _mix_batch(self, x):
        lam, use_cutmix = self._params_per_batch()
        if lam == 1.:
            return 1.
        if use_cutmix:
            (yl, yh, xl, xh), lam = self._cutmix_bbox_and_lam(
                x.shape,
                lam,
                ratio_minmax=self.cutmix_minmax,
                correct_lam=self.correct_lam)
            if yl < yh and xl < xh:
                x[:, :, yl:yh, xl:xh] = x.flip(0)[:, :, yl:yh, xl:xh]

        else:
            x_flipped = x.flip(0) * (1. - lam)
            x[:] = x * lam + x_flipped
        return lam

    def _unpack(self, batch):
        """ _unpack """
        assert isinstance(batch, list), \
                'batch should be a list filled with tuples (img, label)'
        bs = len(batch)
        assert bs > 0, 'size of the batch data should > 0'
        #imgs, labels = list(zip(*batch))
        imgs = []
        labels = []
        for item in batch:
            imgs.append(item[0])
            labels.append(item[1])
        return np.array(imgs), np.array(labels), bs

    def __call__(self, batch):
        x, target, bs = self._unpack(batch)
        x = paddle.to_tensor(x)
        target = paddle.to_tensor(target)
        assert len(x) % 2 == 0, 'Batch size should be even when using this'
        if self.mode == 'elem':
            lam = self._mix_elem(x)
        elif self.mode == 'pair':
            lam = self._mix_pair(x)
        else:
            lam = self._mix_batch(x)
        target = self._mixup_target(target, self.num_classes, lam,
                                    self.label_smoothing)

        return list(zip(x.numpy(), target.numpy()))