提交 ae768d6a 编写于 作者: G gaotingquan

feat: support to enable mixup and cutmix at same time

上级 17a06daf
......@@ -23,6 +23,7 @@ from ppcls.data.preprocess.ops.fmix import sample_mask
class BatchOperator(object):
""" BatchOperator """
def __init__(self, *args, **kwargs):
pass
......@@ -45,35 +46,44 @@ class BatchOperator(object):
class MixupOperator(BatchOperator):
""" Mixup operator """
def __init__(self, alpha=0.2):
assert alpha > 0., \
'parameter alpha[%f] should > 0.0' % (alpha)
self._alpha = alpha
def __call__(self, batch):
imgs, labels, bs = self._unpack(batch)
"""Mixup and Cutmix operator"""
def __init__(self,
mixup_alpha: float=1.,
cutmix_alpha: float=0.,
switch_prob: float=0.5):
"""Build Mixup operator
Args:
mixup_alpha (float, optional): The parameter alpha of mixup, mixup is active if > 0. Defaults to 1..
cutmix_alpha (float, optional): The parameter alpha of cutmix, cutmix is active if > 0. Defaults to 0..
switch_prob (float, optional): The probability of switching to cutmix instead of mixup when both are active. Defaults to 0.5.
Raises:
Exception: The value of parameters are illegal.
"""
if mixup_alpha <= 0 and cutmix_alpha <= 0:
raise Exception(
f"At least one of parameter alpha of Mixup and Cutmix is greater than 0. mixup_alpha: {mixup_alpha}, cutmix_alpha: {cutmix_alpha}"
)
self._mixup_alpha = mixup_alpha
self._cutmix_alpha = cutmix_alpha
self._switch_prob = switch_prob
def _mixup(self, imgs, labels, bs):
idx = np.random.permutation(bs)
lam = np.random.beta(self._alpha, self._alpha)
lam = np.random.beta(self._mixup_alpha, self._mixup_alpha)
lams = np.array([lam] * bs, dtype=np.float32)
imgs = lam * imgs + (1 - lam) * imgs[idx]
return list(zip(imgs, labels, labels[idx], lams))
class CutmixOperator(BatchOperator):
""" Cutmix operator """
def __init__(self, alpha=0.2):
assert alpha > 0., \
'parameter alpha[%f] should > 0.0' % (alpha)
self._alpha = alpha
def _rand_bbox(self, size, lam):
""" _rand_bbox """
w = size[2]
h = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = np.int(w * cut_rat)
cut_h = np.int(h * cut_rat)
cut_w = int(w * cut_rat)
cut_h = int(h * cut_rat)
# uniform
cx = np.random.randint(w)
......@@ -86,10 +96,9 @@ class CutmixOperator(BatchOperator):
return bbx1, bby1, bbx2, bby2
def __call__(self, batch):
imgs, labels, bs = self._unpack(batch)
def _cutmix(self, imgs, labels, bs):
idx = np.random.permutation(bs)
lam = np.random.beta(self._alpha, self._alpha)
lam = np.random.beta(self._cutmix_alpha, self._cutmix_alpha)
bbx1, bby1, bbx2, bby2 = self._rand_bbox(imgs.shape, lam)
imgs[:, :, bbx1:bbx2, bby1:bby2] = imgs[idx, :, bbx1:bbx2, bby1:bby2]
......@@ -98,9 +107,24 @@ class CutmixOperator(BatchOperator):
lams = np.array([lam] * bs, dtype=np.float32)
return list(zip(imgs, labels, labels[idx], lams))
def __call__(self, batch):
imgs, labels, bs = self._unpack(batch)
if np.random.rand() < self._switch_prob:
return self._cutmix(imgs, labels, bs)
else:
return self._mixup(imgs, labels, bs)
class CutmixOperator(BatchOperator):
def __init__(self, **kwargs):
raise Exception(
f"\"CutmixOperator\" has been deprecated. Please use MixupOperator with \"cutmix_alpha\" and \"switch_prob\" to enable Cutmix. Refor to doc for details."
)
class FmixOperator(BatchOperator):
""" Fmix operator """
def __init__(self, alpha=1, decay_power=3, max_soft=0., reformulate=False):
self._alpha = alpha
self._decay_power = decay_power
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册