MobileViT_S.yaml 2.9 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: ./output/
  device: gpu
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
  epochs: 300
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 256, 256]
  save_inference_dir: ./inference
  use_dali: False
# model architecture
Arch:
  name: MobileViT_S
  class_num: 1000
 
# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
        epsilon: 0.1
  Eval:
    - CELoss:
        weight: 1.0


Optimizer:
  name: AdamW
  beta1: 0.9
  beta2: 0.999
  epsilon: 1e-8
  weight_decay: 0.01
  no_weight_decay_name: .bias norm
  one_dim_param_no_weight_decay: True
  lr:
    # for 8 cards
    name: Cosine
    learning_rate: 0.002
    eta_min: 0.0002
    warmup_epoch: 5
    warmup_start_lr: 0.0002


# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/train_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 256
            interpolation: bilinear
            backend: pil
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.0, 0.0, 0.0]
            std: [1.0, 1.0, 1.0]
            order: ''

    sampler:
      name: DistributedBatchSampler
      batch_size: 128
      drop_last: False
      shuffle: True
    loader:
      num_workers: 8
      use_shared_memory: True

  Eval:
    dataset: 
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/val_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: False
            channel_first: False
        - ResizeImage:
            resize_short: 292
            interpolation: bilinear
            backend: pil
        - CropImage:
            size: 256
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.0, 0.0, 0.0]
            std: [1.0, 1.0, 1.0]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 64
      drop_last: False
      shuffle: False
    loader:
      num_workers: 4
      use_shared_memory: True

Infer:
  infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  batch_size: 10
  transforms:
    - DecodeImage:
        to_rgb: True
        channel_first: False
    - ResizeImage:
        resize_short: 292
    - CropImage:
        size: 256
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.0, 0.0, 0.0]
        std: [1.0, 1.0, 1.0]
        order: ''
    - ToCHWImage:
  PostProcess:
    name: Topk
    topk: 5
    class_id_map_file: ppcls/utils/imagenet1k_label_list.txt

Metric:
  Train:
    - TopkAcc:
        topk: [1, 5]
  Eval:
    - TopkAcc:
        topk: [1, 5]