The accuracy and speed indicators of MobileViT series models are shown in the following table. For more introduction, please refer to:[MobileViT series model documents](../models/MobileViT_en.md)
| Model | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(M) | Params(M) | Pretrained Model Download Address | Inference Model Download Address |
The accuracy and speed indicators of AlexNet <sup>[[18](#ref18)]</sup>, SqueezeNet series <sup>[[19](#ref19)]</sup>, VGG series <sup>[[20](#ref20)]</sup>, DarkNet53 <sup>[[21](#ref21)]</sup> and other models are shown in the following table. For more information, please refer to: [Other model documents](../models/Others_en.md).
...
...
@@ -637,3 +649,5 @@ TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE.
<aname="ref40">[40]</a>Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen, Baining Guo. CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows.
MobileViT is a lightweight visual Transformer network that can be used as a general backbone network in the field of computer vision. MobileViT combines the advantages of CNN and Transformer, which can better deal with global features and local features, and better solve the problem of lack of inductive bias in Transformer models.
, and finally, under the same amount of parameters, compared with other SOTA models, the tasks of image classification, object detection, and semantic segmentation have been greatly improved. [Paper](https://arxiv.org/pdf/2110.02178.pdf)