mobilenet_v1.py 8.0 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19 20
import numpy as np
import paddle
W
WuHaobo 已提交
21 22
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
23 24 25 26
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
from paddle.fluid.initializer import MSRA
import math
W
WuHaobo 已提交
27 28

__all__ = [
29
    "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75", "MobileNetV1"
W
WuHaobo 已提交
30 31 32
]


33 34 35 36 37 38 39 40 41 42 43 44 45
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 filter_size,
                 num_filters,
                 stride,
                 padding,
                 channels=None,
                 num_groups=1,
                 act='relu',
                 use_cudnn=True,
                 name=None):
        super(ConvBNLayer, self).__init__()
W
WuHaobo 已提交
46

47 48
        self._conv = Conv2D(
            num_channels=num_channels,
W
WuHaobo 已提交
49 50 51 52 53 54 55 56 57 58
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=ParamAttr(
                initializer=MSRA(), name=name + "_weights"),
            bias_attr=False)
59 60 61

        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
62
            act=act,
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
            param_attr=ParamAttr(name + "_bn_scale"),
            bias_attr=ParamAttr(name + "_bn_offset"),
            moving_mean_name=name + "_bn_mean",
            moving_variance_name=name + "_bn_variance")

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class DepthwiseSeparable(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters1,
                 num_filters2,
                 num_groups,
                 stride,
                 scale,
                 name=None):
        super(DepthwiseSeparable, self).__init__()

        self._depthwise_conv = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
87
            num_filters=int(num_filters1 * scale),
88
            filter_size=3,
W
WuHaobo 已提交
89 90 91 92 93 94
            stride=stride,
            padding=1,
            num_groups=int(num_groups * scale),
            use_cudnn=False,
            name=name + "_dw")

95 96
        self._pointwise_conv = ConvBNLayer(
            num_channels=int(num_filters1 * scale),
W
WuHaobo 已提交
97 98 99 100 101
            filter_size=1,
            num_filters=int(num_filters2 * scale),
            stride=1,
            padding=0,
            name=name + "_sep")
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

    def forward(self, inputs):
        y = self._depthwise_conv(inputs)
        y = self._pointwise_conv(y)
        return y


class MobileNet(fluid.dygraph.Layer):
    def __init__(self, scale=1.0, class_dim=1000):
        super(MobileNet, self).__init__()
        self.scale = scale
        self.block_list = []

        self.conv1 = ConvBNLayer(
            num_channels=3,
            filter_size=3,
            channels=3,
            num_filters=int(32 * scale),
            stride=2,
            padding=1,
            name="conv1")

        conv2_1 = self.add_sublayer(
            "conv2_1",
            sublayer=DepthwiseSeparable(
                num_channels=int(32 * scale),
                num_filters1=32,
                num_filters2=64,
                num_groups=32,
                stride=1,
                scale=scale,
                name="conv2_1"))
        self.block_list.append(conv2_1)

        conv2_2 = self.add_sublayer(
            "conv2_2",
            sublayer=DepthwiseSeparable(
                num_channels=int(64 * scale),
                num_filters1=64,
                num_filters2=128,
                num_groups=64,
                stride=2,
                scale=scale,
                name="conv2_2"))
        self.block_list.append(conv2_2)

        conv3_1 = self.add_sublayer(
            "conv3_1",
            sublayer=DepthwiseSeparable(
                num_channels=int(128 * scale),
                num_filters1=128,
                num_filters2=128,
                num_groups=128,
                stride=1,
                scale=scale,
                name="conv3_1"))
        self.block_list.append(conv3_1)

        conv3_2 = self.add_sublayer(
            "conv3_2",
            sublayer=DepthwiseSeparable(
                num_channels=int(128 * scale),
                num_filters1=128,
                num_filters2=256,
                num_groups=128,
                stride=2,
                scale=scale,
                name="conv3_2"))
        self.block_list.append(conv3_2)

        conv4_1 = self.add_sublayer(
            "conv4_1",
            sublayer=DepthwiseSeparable(
                num_channels=int(256 * scale),
                num_filters1=256,
                num_filters2=256,
                num_groups=256,
                stride=1,
                scale=scale,
                name="conv4_1"))
        self.block_list.append(conv4_1)

        conv4_2 = self.add_sublayer(
            "conv4_2",
            sublayer=DepthwiseSeparable(
                num_channels=int(256 * scale),
                num_filters1=256,
                num_filters2=512,
                num_groups=256,
                stride=2,
                scale=scale,
                name="conv4_2"))
        self.block_list.append(conv4_2)

        for i in range(5):
            conv5 = self.add_sublayer(
                "conv5_" + str(i + 1),
                sublayer=DepthwiseSeparable(
                    num_channels=int(512 * scale),
                    num_filters1=512,
                    num_filters2=512,
                    num_groups=512,
                    stride=1,
                    scale=scale,
                    name="conv5_" + str(i + 1)))
            self.block_list.append(conv5)

        conv5_6 = self.add_sublayer(
            "conv5_6",
            sublayer=DepthwiseSeparable(
                num_channels=int(512 * scale),
                num_filters1=512,
                num_filters2=1024,
                num_groups=512,
                stride=2,
                scale=scale,
                name="conv5_6"))
        self.block_list.append(conv5_6)

        conv6 = self.add_sublayer(
            "conv6",
            sublayer=DepthwiseSeparable(
                num_channels=int(1024 * scale),
                num_filters1=1024,
                num_filters2=1024,
                num_groups=1024,
                stride=1,
                scale=scale,
                name="conv6"))
        self.block_list.append(conv6)

        self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)

        self.out = Linear(
            int(1024 * scale),
            class_dim,
            param_attr=ParamAttr(
                initializer=MSRA(), name="fc7_weights"),
            bias_attr=ParamAttr(name="fc7_offset"))

    def forward(self, inputs):
        y = self.conv1(inputs)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[-1, int(1024 * self.scale)])
        y = self.out(y)
        return y
W
WuHaobo 已提交
250 251


252 253
def MobileNetV1_x0_25(**args):
    model = MobileNet(scale=0.25, **args)
W
WuHaobo 已提交
254 255 256
    return model


257 258
def MobileNetV1_x0_5(**args):
    model = MobileNet(scale=0.5, **args)
W
WuHaobo 已提交
259 260 261
    return model


262 263
def MobileNetV1_x0_75(**args):
    model = MobileNet(scale=0.75, **args)
W
WuHaobo 已提交
264 265 266
    return model


267 268
def MobileNetV1(**args):
    model = MobileNet(scale=1.0, **args)
W
WuHaobo 已提交
269
    return model