mobilenet_v1.py 6.1 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr

__all__ = [
    'MobileNetV1', 'MobileNetV1_x0_25', 'MobileNetV1_x0_5', 'MobileNetV1_x1_0',
    'MobileNetV1_x0_75'
]


class MobileNetV1():
    def __init__(self, scale=1.0):
        self.scale = scale

    def net(self, input, class_dim=1000):
        scale = self.scale
        # conv1: 112x112
        input = self.conv_bn_layer(
            input,
            filter_size=3,
            channels=3,
            num_filters=int(32 * scale),
            stride=2,
            padding=1,
            name="conv1")

        # 56x56
        input = self.depthwise_separable(
            input,
            num_filters1=32,
            num_filters2=64,
            num_groups=32,
            stride=1,
            scale=scale,
            name="conv2_1")

        input = self.depthwise_separable(
            input,
            num_filters1=64,
            num_filters2=128,
            num_groups=64,
            stride=2,
            scale=scale,
            name="conv2_2")

        # 28x28
        input = self.depthwise_separable(
            input,
            num_filters1=128,
            num_filters2=128,
            num_groups=128,
            stride=1,
            scale=scale,
            name="conv3_1")

        input = self.depthwise_separable(
            input,
            num_filters1=128,
            num_filters2=256,
            num_groups=128,
            stride=2,
            scale=scale,
            name="conv3_2")

        # 14x14
        input = self.depthwise_separable(
            input,
            num_filters1=256,
            num_filters2=256,
            num_groups=256,
            stride=1,
            scale=scale,
            name="conv4_1")

        input = self.depthwise_separable(
            input,
            num_filters1=256,
            num_filters2=512,
            num_groups=256,
            stride=2,
            scale=scale,
            name="conv4_2")

        # 14x14
        for i in range(5):
            input = self.depthwise_separable(
                input,
                num_filters1=512,
                num_filters2=512,
                num_groups=512,
                stride=1,
                scale=scale,
                name="conv5" + "_" + str(i + 1))
        # 7x7
        input = self.depthwise_separable(
            input,
            num_filters1=512,
            num_filters2=1024,
            num_groups=512,
            stride=2,
            scale=scale,
            name="conv5_6")

        input = self.depthwise_separable(
            input,
            num_filters1=1024,
            num_filters2=1024,
            num_groups=1024,
            stride=1,
            scale=scale,
            name="conv6")

        input = fluid.layers.pool2d(
            input=input, pool_type='avg', global_pooling=True)

        output = fluid.layers.fc(input=input,
                                 size=class_dim,
                                 param_attr=ParamAttr(
                                     initializer=MSRA(), name="fc7_weights"),
                                 bias_attr=ParamAttr(name="fc7_offset"))
        return output

    def conv_bn_layer(self,
                      input,
                      filter_size,
                      num_filters,
                      stride,
                      padding,
                      channels=None,
                      num_groups=1,
                      act='relu',
                      use_cudnn=True,
                      name=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=ParamAttr(
                initializer=MSRA(), name=name + "_weights"),
            bias_attr=False)
        bn_name = name + "_bn"
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(name=bn_name + "_offset"),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def depthwise_separable(self,
                            input,
                            num_filters1,
                            num_filters2,
                            num_groups,
                            stride,
                            scale,
                            name=None):
        depthwise_conv = self.conv_bn_layer(
            input=input,
            filter_size=3,
            num_filters=int(num_filters1 * scale),
            stride=stride,
            padding=1,
            num_groups=int(num_groups * scale),
            use_cudnn=False,
            name=name + "_dw")

        pointwise_conv = self.conv_bn_layer(
            input=depthwise_conv,
            filter_size=1,
            num_filters=int(num_filters2 * scale),
            stride=1,
            padding=0,
            name=name + "_sep")
        return pointwise_conv


def MobileNetV1_x0_25():
    model = MobileNetV1(scale=0.25)
    return model


def MobileNetV1_x0_5():
    model = MobileNetV1(scale=0.5)
    return model


def MobileNetV1_x1_0():
    model = MobileNetV1(scale=1.0)
    return model


def MobileNetV1_x0_75():
    model = MobileNetV1(scale=0.75)
    return model