README.md 144.7 KB
Newer Older
G
gaotingquan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
<!-- 简体中文 | [English](../../en/algorithm_introduction/model_list.md) -->


# ImageNet 预训练模型库

## 目录

- [一、模型库概览图](#Overview)
- [二、SSLD 知识蒸馏预训练模型](#SSLD)
  - [2.1 服务器端知识蒸馏模型](#SSLD_server)
  - [2.2 移动端知识蒸馏模型](#SSLD_mobile)
  - [2.3 Intel CPU 端知识蒸馏模型](#SSLD_intel_cpu)
- [三、CNN 系列模型](#CNN_based)
  - [3.1 服务器端模型](#CNN_server)
    - [PP-HGNet 系列](#PPHGNet)
    - [ResNet 系列](#ResNet)
    - [ResNeXt 系列](#ResNeXt)
    - [Res2Net 系列](#Res2Net)
    - [SENet 系列](#SENet)
    - [DPN 系列](#DPN)
    - [DenseNet 系列](#DenseNet)
    - [HRNet 系列](#HRNet)
    - [Inception 系列](#Inception)
    - [EfficientNet 系列](#EfficientNet)
    - [ResNeXt101_wsl 系列](#ResNeXt101_wsl)
    - [ResNeSt 系列](#ResNeSt)
    - [RegNet 系列](#RegNet)
    - [RepVGG 系列](#RepVGG)
    - [MixNet 系列](#MixNet)
    - [ReXNet 系列](#ReXNet)
    - [HarDNet 系列](#HarDNet)
    - [DLA 系列](#DLA)
    - [RedNet 系列](#RedNet)
    - [ConvNeXt](#ConvNeXt)
    - [VAN](#VAN)
    - [PeleeNet](#PeleeNet)
    - [CSPNet](#CSPNet)
    - [其他模型](#Others)
  - [3.2 轻量级模型](#CNN_lite)
    - [移动端系列](#Mobile)
    - [PP-LCNet & PP-LCNetV2 系列](#PPLCNet)
- [四、Transformer 系列模型](#Transformer_based)
  - [4.1 服务器端模型](#Transformer_server)
    - [ViT 系列](#ViT)
    - [DeiT 系列](#DeiT)
    - [SwinTransformer 系列](#SwinTransformer)
    - [Twins 系列](#Twins)
    - [CSwinTransformer 系列](#CSwinTransformer)
    - [PVTV2 系列](#PVTV2)
    - [LeViT 系列](#LeViT)
    - [TNT 系列](#TNT)
C
cuicheng01 已提交
52
    - [NextViT 系列](#NextViT)
weixin_46524038's avatar
weixin_46524038 已提交
53
    - [UniFormer 系列](#UniFormer)
L
LittleMoon 已提交
54
    - [DSNet 系列](#DSNet)
G
gaotingquan 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  - [4.2 轻量级模型](#Transformer_lite)
    - [MobileViT 系列](#MobileViT)
- [五、参考文献](#reference)

<a name="Overview"></a>

## 一、模型库概览图

基于 ImageNet1k 分类数据集,PaddleClas 支持 37 个系列分类网络结构以及对应的 217 个图像分类预训练模型,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现,下面所有的速度指标评估环境如下:
* Arm CPU 的评估环境基于骁龙 855(SD855)。
* Intel CPU 的评估环境基于 Intel(R) Xeon(R) Gold 6148。
* GPU 评估环境基于 V100 机器,在 FP32+TensorRT 配置下运行 2100 次测得(去除前 100 次的 warmup 时间)。
* FLOPs 与 Params 通过 `paddle.flops()` 计算得到(PaddlePaddle 版本为 2.2)

常见服务器端模型的精度指标与其预测耗时的变化曲线如下图所示。

![](../../../images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.png)

常见移动端模型的精度指标与其预测耗时的变化曲线如下图所示。

![](../../../images/models/mobile_arm_top1.png)

部分VisionTransformer模型的精度指标与其预测耗时的变化曲线如下图所示.

![](../../../images/models/V100_benchmark/v100.fp32.bs1.visiontransformer.png)

<a name="SSLD"></a>

## 二、SSLD 知识蒸馏预训练模型
基于 SSLD 知识蒸馏的预训练模型列表如下所示,更多关于 SSLD 知识蒸馏方案的介绍可以参考:[SSLD 知识蒸馏文档](../../algorithm_introduction/knowledge_distillation.md)

<a name="SSLD_server"></a>

### 2.1 服务器端知识蒸馏模型

| 模型                  | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|-----------------------------------|-----------------------------------|
| ResNet34_vd_ssld         | 0.797    | 0.760  | 0.037  | 2.00             | 3.28             | 5.84              | 3.93     | 21.84     | <span style="white-space:nowrap;">[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams)&emsp;&emsp;</span> | <span style="white-space:nowrap;">[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld_infer.tar)&emsp;&emsp;</span> |
| ResNet50_vd_ssld | 0.830    | 0.792    | 0.039 | 2.60             | 4.86             | 7.63              | 4.35     | 25.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar) |
| ResNet101_vd_ssld   | 0.837    | 0.802    | 0.035 | 4.43             | 8.25             | 12.60     | 8.08     | 44.67     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams)   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar) |
| Res2Net50_vd_26w_4s_ssld | 0.831    | 0.798    | 0.033 | 3.59             | 6.35             | 9.50              | 4.28     | 25.76     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_ssld_infer.tar) |
| Res2Net101_vd_<br>26w_4s_ssld | 0.839    | 0.806    | 0.033 | 6.34             | 11.02            | 16.13             | 8.35    | 45.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net101_vd_26w_4s_ssld_infer.tar) |
| Res2Net200_vd_<br>26w_4s_ssld | 0.851    | 0.812    | 0.049 | 11.45            | 19.77            | 28.81             | 15.77    | 76.44     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_ssld_infer.tar) |
| HRNet_W18_C_ssld | 0.812    | 0.769   | 0.043 | 6.66             | 8.94             | 11.95             | 4.32     | 21.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_ssld_infer.tar) |
| HRNet_W48_C_ssld | 0.836    | 0.790   | 0.046  | 11.07            | 17.06            | 27.28             | 17.34    | 77.57     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_ssld_infer.tar) |
| SE_HRNet_W64_C_ssld | 0.848    |  -    |  - | 17.11            | 26.87            |    43.24 | 29.00    | 129.12    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_HRNet_W64_C_ssld_infer.tar) |
| PPHGNet_tiny_ssld | 0.8195    |  0.7983  |  0.021 |  1.77            |       -     |  -       | 4.54        | 14.75        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_tiny_ssld_infer.tar) |
| PPHGNet_small_ssld | 0.8382    |  0.8151  |  0.023 | 2.52            | -           |    -  | 8.53       | 24.38           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_ssld_infer.tar) |

<a name="SSLD_mobile"></a>

### 2.2 移动端知识蒸馏模型

| 模型                  | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | SD855 time(ms)<br>bs=1, thread=1 | SD855 time(ms)<br/>bs=1, thread=2 | SD855 time(ms)<br/>bs=1, thread=4 | FLOPs(M) | Params(M) | <span style="white-space:nowrap;">模型大小(M)</span> | 预训练模型下载地址 | inference模型下载地址 |
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| MobileNetV1_ssld   | 0.779    | 0.710    | 0.069 | 30.24                            | 17.86                             | 10.30                             | 578.88     | 4.25      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_ssld_infer.tar) |
| MobileNetV2_ssld                 | 0.767    | 0.722  | 0.045  | 20.74                            | 12.71                             | 8.10                              | 327.84      | 3.54      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_ssld_infer.tar) |
| MobileNetV3_small_x0_35_ssld          | 0.556    | 0.530 | 0.026   | 2.23 | 1.66 | 1.43 | 14.56    | 1.67      | 6.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_ssld_infer.tar) |
| MobileNetV3_large_x1_0_ssld      | 0.790    | 0.753  | 0.036  | 16.55                            | 10.09                             | 6.84                              | 229.66     | 5.50      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_ssld_infer.tar) |
| MobileNetV3_small_x1_0_ssld      | 0.713    | 0.682  |  0.031  | 5.63                             | 3.65                              | 2.60                              | 63.67    | 2.95      | 12      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_ssld_infer.tar) |
| GhostNet_x1_3_ssld                    | 0.794    | 0.757   | 0.037 | 19.16                            | 12.25     | 9.40     | 236.89     | 7.38       | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_ssld_infer.tar) |

<a name="SSLD_intel_cpu"></a>

### 2.3 Intel CPU 端知识蒸馏模型

| 模型                  | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain |  Intel-Xeon-Gold-6148 time(ms)<br>bs=1 | FLOPs(M) | Params(M)  | 预训练模型下载地址 | inference模型下载地址 |
|---------------------|-----------|-----------|---------------|----------------|----------|-----------|-----------------------------------|-----------------------------------|
| PPLCNet_x0_5_ssld   | 0.661    | 0.631    | 0.030 | 2.05     | 47.28     |   1.89   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_5_ssld_infer.tar) |
| PPLCNet_x1_0_ssld   | 0.744    | 0.713    | 0.033 | 2.46     | 160.81     |   2.96  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_ssld_infer.tar) |
| PPLCNet_x2_5_ssld   | 0.808    | 0.766    | 0.042 | 5.39     | 906.49     |   9.04  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_ssld_infer.tar) |

* 注: `Reference Top-1 Acc` 表示 PaddleClas 基于 ImageNet1k 数据集训练得到的预训练模型精度。

<a name="CNN_based"></a>

## 三、CNN 系列模型

<a name="CNN_server"></a>

### 3.1 服务器端模型

<a name="PPHGNet"></a>

## PP-HGNet 系列

PP-HGNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[PP-HGNet 系列模型文档](PP-HGNet.md)

| 模型  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---  | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| PPHGNet_tiny | 0.7983    |  0.9504    | 1.77            |       -     |  -       | 4.54        | 14.75        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_tiny_infer.tar) |
| PPHGNet_tiny_ssld | 0.8195    |  0.9612  |  1.77            |       -     |  -       | 4.54        | 14.75        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_tiny_ssld_infer.tar) |
| PPHGNet_small | 0.8151    |  0.9582    |  2.52            | -           |    -  | 8.53       | 24.38           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_infer.tar) |
| PPHGNet_small_ssld | 0.8382    |  0.9681  | 2.52            | -           |    -  | 8.53       | 24.38           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_ssld_infer.tar) |
| PPHGNet_base_ssld | 0.8500    |  0.9735  | 5.97            | -           |    -  | 25.14       | 71.62           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_base_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_base_ssld_infer.tar) |

<a name="ResNet"></a>

## ResNet 系列 <sup>[[1](#ref1)]</sup>

ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNet 系列模型文档](ResNet.md)

| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址                      |
|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| ResNet18            | 0.7098    | 0.8992    | 1.22             | 2.19             | 3.63         | 1.83     | 11.70     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet18_infer.tar) |
| ResNet18_vd         | 0.7226    | 0.9080    | 1.26             | 2.28             | 3.89         | 2.07     | 11.72     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet18_vd_infer.tar) |
| ResNet34            | 0.7457    | 0.9214    | 1.97             | 3.25             | 5.70         | 3.68     | 21.81     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_infer.tar) |
| ResNet34_vd         | 0.7598    | 0.9298    | 2.00             | 3.28             | 5.84         | 3.93     | 21.84     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_infer.tar) |
| ResNet34_vd_ssld         | 0.7972    | 0.9490    | 2.00             | 3.28             | 5.84              | 3.93     | 21.84     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld_infer.tar) |
| ResNet50            | 0.7650    | 0.9300    | 2.54             | 4.79             | 7.40         | 4.11     | 25.61     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_infer.tar) |
| ResNet50_vc         | 0.7835    | 0.9403    | 2.57             | 4.83             | 7.52         | 4.35     | 25.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vc_infer.tar) |
| ResNet50_vd         | 0.7912    | 0.9444    | 2.60             | 4.86             | 7.63         | 4.35     | 25.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar) |
| ResNet101           | 0.7756    | 0.9364    | 4.37             | 8.18             | 12.38       | 7.83    | 44.65     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_infer.tar) |
| ResNet101_vd        | 0.8017    | 0.9497    | 4.43             | 8.25             | 12.60       | 8.08     | 44.67     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_infer.tar) |
| ResNet152           | 0.7826    | 0.9396    | 6.05             | 11.41            | 17.33       | 11.56    | 60.34     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet152_infer.tar) |
| ResNet152_vd        | 0.8059    | 0.9530    | 6.11             | 11.51            | 17.59       | 11.80    | 60.36     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet152_vd_infer.tar) |
| ResNet200_vd        | 0.8093    | 0.9533    | 7.70             | 14.57            | 22.16       | 15.30    | 74.93     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet200_vd_infer.tar) |
| ResNet50_vd_<br>ssld | 0.8300    | 0.9640    | 2.60             | 4.86             | 7.63              | 4.35     | 25.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar) |
| ResNet101_vd_<br>ssld   | 0.8373    | 0.9669    | 4.43             | 8.25             | 12.60             | 8.08     | 44.67     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams)   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar) |

<a name="ResNeXt"></a>

## ResNeXt 系列 <sup>[[7](#ref7)]</sup>

ResNeXt 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNeXt 系列模型文档](ResNeXt.md)


| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址               |
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| ResNeXt50_<br>32x4d           | 0.7775    | 0.9382    | 5.07             | 8.49             | 12.02        | 4.26     | 25.10     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_32x4d_infer.tar) |
| ResNeXt50_vd_<br>32x4d        | 0.7956    | 0.9462    | 5.29             | 8.68             | 12.33       | 4.50     | 25.12     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_vd_32x4d_infer.tar) |
| ResNeXt50_<br>64x4d           | 0.7843    | 0.9413    | 9.39             | 13.97            | 20.56        | 8.02    | 45.29     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_64x4d_infer.tar) |
| ResNeXt50_vd_<br>64x4d        | 0.8012    | 0.9486    | 9.75             | 14.14            | 20.84       | 8.26    | 45.31     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_vd_64x4d_infer.tar) |
| ResNeXt101_<br>32x4d          | 0.7865    | 0.9419    | 11.34            | 16.78            | 22.80       | 8.01    | 44.32     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x4d_infer.tar) |
| ResNeXt101_vd_<br>32x4d       | 0.8033    | 0.9512    | 11.36            | 17.01            | 23.07       | 8.25    | 44.33     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_vd_32x4d_infer.tar) |
| ResNeXt101_<br>64x4d          | 0.7835    | 0.9452    | 21.57            | 28.08            | 39.49       | 15.52    | 83.66     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_64x4d_infer.tar) |
| ResNeXt101_vd_<br>64x4d       | 0.8078    | 0.9520    | 21.57            | 28.22            | 39.70       | 15.76    | 83.68     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_vd_64x4d_infer.tar) |
| ResNeXt152_<br>32x4d          | 0.7898    | 0.9433    | 17.14            | 25.11            | 33.79       | 11.76    | 60.15     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_32x4d_infer.tar) |
| ResNeXt152_vd_<br>32x4d       | 0.8072    | 0.9520    | 16.99            | 25.29            | 33.85       | 12.01    | 60.17      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_vd_32x4d_infer.tar) |
| ResNeXt152_<br>64x4d          | 0.7951    | 0.9471    | 33.07            | 42.05            | 59.13       | 23.03    | 115.27    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_64x4d_infer.tar) |
| ResNeXt152_vd_<br>64x4d       | 0.8108    | 0.9534    | 33.30            | 42.41            | 59.42       | 23.27    | 115.29   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_vd_64x4d_infer.tar) |

<a name="Res2Net"></a>

## Res2Net 系列 <sup>[[9](#ref9)]</sup>

Res2Net 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[Res2Net 系列模型文档](Res2Net.md)

| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址               |
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Res2Net50_<br>26w_4s          | 0.7933    | 0.9457    | 3.52             | 6.23             | 9.30         | 4.28     | 25.76      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_26w_4s_infer.tar) |
| Res2Net50_vd_<br>26w_4s       | 0.7975    | 0.9491    | 3.59             | 6.35             | 9.50         | 4.52     | 25.78     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_infer.tar) |
| Res2Net50_<br>14w_8s          | 0.7946    | 0.9470    | 4.39             | 7.21             | 10.38       | 4.20     | 25.12     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_14w_8s_infer.tar) |
| Res2Net101_vd_<br>26w_4s      | 0.8064    | 0.9522    | 6.34             | 11.02            | 16.13       | 8.35    | 45.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net101_vd_26w_4s_infer.tar) |
| Res2Net200_vd_<br>26w_4s      | 0.8121    | 0.9571    | 11.45            | 19.77            | 28.81       | 15.77    | 76.44     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_infer.tar) |
| Res2Net200_vd_<br>26w_4s_ssld | 0.8513    | 0.9742    | 11.45            | 19.77            | 28.81             | 15.77    | 76.44     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_ssld_infer.tar) |

<a name="SENet"></a>

## SENet 系列 <sup>[[8](#ref8)]</sup>

SENet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[SENet 系列模型文档](SENet.md)

| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址               |
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| SE_ResNet18_vd            | 0.7333    | 0.9138    | 1.48             | 2.70             | 4.32         | 2.07     | 11.81      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet18_vd_infer.tar) |
| SE_ResNet34_vd            | 0.7651    | 0.9320    | 2.42             | 3.69             | 6.29         | 3.93     | 22.00     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet34_vd_infer.tar) |
| SE_ResNet50_vd            | 0.7952    | 0.9475    | 3.11             | 5.99             | 9.34        | 4.36     | 28.16     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet50_vd_infer.tar) |
| SE_ResNeXt50_<br>32x4d        | 0.7844    | 0.9396    | 6.39             | 11.01            | 14.94         | 4.27     | 27.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt50_32x4d_infer.tar) |
| SE_ResNeXt50_vd_<br>32x4d     | 0.8024    | 0.9489    | 7.04             | 11.57            | 16.01       | 5.64    | 27.76     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams)     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt50_vd_32x4d_infer.tar) |
| SE_ResNeXt101_<br>32x4d       | 0.7939    | 0.9443    | 13.31            | 21.85            | 28.77       | 8.03    | 49.09     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt101_32x4d_infer.tar) |
| SENet154_vd               | 0.8140    | 0.9548    | 34.83            | 51.22            | 69.74       | 24.45    | 122.03    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SENet154_vd_infer.tar) |

<a name="DPN"></a>

## DPN 系列 <sup>[[14](#ref14)]</sup>

DPN 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[DPN 系列模型文档](DPN.md)

| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址 |
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|-------------|-------------|
| DPN68       | 0.7678    | 0.9343    | 8.18             | 11.40            | 14.82       | 2.35     | 12.68     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN68_infer.tar) |
| DPN92       | 0.7985    | 0.9480    | 12.48            | 20.04            | 25.10       | 6.54    | 37.79     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN92_infer.tar) |
| DPN98       | 0.8059    | 0.9510    | 14.70            | 25.55            | 35.12       | 11.728    | 61.74     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN98_infer.tar) |
| DPN107      | 0.8089    | 0.9532    | 19.46            | 35.62            | 50.22       | 18.38    | 87.13     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN107_infer.tar) |
| DPN131      | 0.8070    | 0.9514    | 19.64            | 34.60            | 47.42       | 16.09    | 79.48     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN131_infer.tar) |

<a name="DenseNet"></a>

## DenseNet 系列 <sup>[[15](#ref15)]</sup>

DenseNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[DenseNet 系列模型文档](DenseNet.md)

| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址 |
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|-------------|-------------|
| DenseNet121 | 0.7566    | 0.9258    | 3.40             | 6.94             | 9.17         | 2.87     | 8.06      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet121_infer.tar) |
| DenseNet161 | 0.7857    | 0.9414    | 7.06             | 14.37            | 19.55       | 7.79    | 28.90     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet161_infer.tar) |
| DenseNet169 | 0.7681    | 0.9331    | 5.00             | 10.29            | 12.84       | 3.40     | 14.31     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet169_infer.tar) |
| DenseNet201 | 0.7763    | 0.9366    | 6.38             | 13.72            | 17.17       | 4.34     | 20.24     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet201_infer.tar) |
| DenseNet264 | 0.7796    | 0.9385    | 9.34             | 20.95            | 25.41       | 5.82    | 33.74     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet264_infer.tar) |

<a name="HRNet"></a>

## HRNet 系列 <sup>[[13](#ref13)]</sup>

HRNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[HRNet 系列模型文档](HRNet.md)

| 模型          | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                      | inference模型下载地址             |
|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| HRNet_W18_C | 0.7692    | 0.9339    | 6.66             | 8.94             | 11.95   | 4.32     | 21.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_infer.tar) |
| HRNet_W18_C_ssld | 0.81162    | 0.95804    | 6.66             | 8.94             | 11.95             | 4.32     | 21.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_ssld_infer.tar) |
| HRNet_W30_C | 0.7804    | 0.9402    | 8.61             | 11.40            | 15.23   | 8.15   | 37.78     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W30_C_infer.tar) |
| HRNet_W32_C | 0.7828    | 0.9424    | 8.54             | 11.58            | 15.57   | 8.97    | 41.30     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W32_C_infer.tar) |
| HRNet_W40_C | 0.7877    | 0.9447    | 9.83             | 15.02            | 20.92   | 12.74    | 57.64     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W40_C_infer.tar) |
| HRNet_W44_C | 0.7900    | 0.9451    | 10.62            | 16.18            | 25.92   | 14.94    | 67.16     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W44_C_infer.tar) |
| HRNet_W48_C | 0.7895    | 0.9442    | 11.07            | 17.06            | 27.28   | 17.34    | 77.57     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_infer.tar) |
| HRNet_W48_C_ssld | 0.8363    | 0.9682    | 11.07            | 17.06            | 27.28             | 17.34    | 77.57     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_ssld_infer.tar) |
| HRNet_W64_C | 0.7930    | 0.9461    | 13.82            | 21.15            | 35.51    | 28.97    | 128.18    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W64_C_infer.tar) |
| SE_HRNet_W64_C_ssld | 0.8475    |  0.9726    | 17.11            | 26.87            |    43.24 | 29.00    | 129.12    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_HRNet_W64_C_ssld_infer.tar) |

<a name="Inception"></a>

## Inception 系列 <sup>[[10](#ref10)][[11](#ref11)][[12](#ref12)][[26](#ref26)]</sup>

Inception 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[Inception 系列模型文档](Inception.md)

| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址                     |
|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| GoogLeNet          | 0.7070    | 0.8966    | 1.41             | 3.25             | 5.00         | 1.44     | 11.54      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GoogLeNet_infer.tar) |
| Xception41         | 0.7930    | 0.9453    | 3.58             | 8.76             | 16.61       | 8.57    | 23.02     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception41_infer.tar) |
| Xception41_deeplab | 0.7955    | 0.9438    | 3.81             | 9.16             | 17.20       | 9.28    | 27.08     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception41_deeplab_infer.tar) |
| Xception65         | 0.8100    | 0.9549    | 5.45             | 12.78            | 24.53       | 13.25    | 36.04     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception65_infer.tar) |
| Xception65_deeplab | 0.8032    | 0.9449    | 5.65             | 13.08            | 24.61       | 13.96    | 40.10     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception65_deeplab_infer.tar) |
| Xception71         | 0.8111    | 0.9545    | 6.19             | 15.34            | 29.21       | 16.21    | 37.86     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception71_infer.tar) |
| InceptionV3        | 0.7914    | 0.9459    | 4.78             | 8.53             | 12.28        | 5.73    | 23.87     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV3_infer.tar) |
| InceptionV4        | 0.8077    | 0.9526    | 8.93             | 15.17            | 21.56       | 12.29    | 42.74     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV4_infer.tar) |

<a name="EfficientNet"></a>

## EfficientNet 系列 <sup>[[16](#ref16)]</sup>

EfficientNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[EfficientNet 系列模型文档](EfficientNet.md)

| 模型                        | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                    | inference模型下载地址                           |
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| EfficientNetB0            | 0.7738    | 0.9331    | 1.96             | 3.71             | 5.56     | 0.40     | 5.33       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB0_infer.tar) |
| EfficientNetB1            | 0.7915    | 0.9441    | 2.88             | 5.40             | 7.63     | 0.71     | 7.86      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB1_infer.tar) |
| EfficientNetB2            | 0.7985    | 0.9474    | 3.26             | 6.20             | 9.17    | 1.02     | 9.18      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB2_infer.tar) |
| EfficientNetB3            | 0.8115    | 0.9541    | 4.52             | 8.85             | 13.54   | 1.88     | 12.324     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB3_infer.tar) |
| EfficientNetB4            | 0.8285    | 0.9623    | 6.78             | 15.47            | 24.95   | 4.51     | 19.47     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB4_infer.tar) |
| EfficientNetB5            | 0.8362    | 0.9672    | 10.97            | 27.24            | 45.93   | 10.51    | 30.56     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB5_infer.tar) |
| EfficientNetB6            | 0.8400    | 0.9688    | 17.09            | 43.32            | 76.90          | 19.47    | 43.27        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB6_infer.tar) |
| EfficientNetB7            | 0.8430    | 0.9689    | 25.91            | 71.23            | 128.20         | 38.45    | 66.66     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB7_infer.tar) |
| EfficientNetB0_<br>small      | 0.7580    | 0.9258    | 1.24             | 2.59             | 3.92     | 0.40     | 4.69      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB0_small_infer.tar) |


<a name="ResNeXt101_wsl"></a>

## ResNeXt101_wsl 系列 <sup>[[17](#ref17)]</sup>

ResNeXt101_wsl 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNeXt101_wsl 系列模型文档](ResNeXt101_wsl.md)

| 模型                        | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                    | inference模型下载地址                           |
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| ResNeXt101_<br>32x8d_wsl      | 0.8255    | 0.9674    | 13.55            | 23.39            | 36.18   | 16.48    | 88.99     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x8d_wsl_infer.tar) |
| ResNeXt101_<br>32x16d_wsl     | 0.8424    | 0.9726    | 21.96            | 38.35            | 63.29   | 36.26    | 194.36    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams)     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x16d_wsl_infer.tar) |
| ResNeXt101_<br>32x32d_wsl     | 0.8497    | 0.9759    | 37.28            | 76.50            | 121.56 | 87.28   | 469.12    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams)     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x32d_wsl_infer.tar) |
| ResNeXt101_<br>32x48d_wsl     | 0.8537    | 0.9769    | 55.07            | 124.39           | 205.01 | 153.57   | 829.26     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams)     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x48d_wsl_infer.tar) |
| Fix_ResNeXt101_<br>32x48d_wsl | 0.8626    | 0.9797    | 55.01            | 122.63           | 204.66 | 313.41   | 829.26     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Fix_ResNeXt101_32x48d_wsl_infer.tar) |

<a name="ResNeSt"></a>

## ResNeSt 系列 <sup>[[24](#ref24)]</sup>

ResNeSt 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNeSt 系列模型文档](ResNeSt.md)

| 模型                   | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                      | inference模型下载地址                          |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
weixin_46524038's avatar
weixin_46524038 已提交
333 334 335 336 337
| ResNeSt50_<br>fast_1s1x64d | 0.8061    | 0.9527    | 2.73             | 5.33             | 8.24           | 4.36     | 26.27      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_fast_1s1x64d_infer.tar) |
| ResNeSt50              | 0.8102    | 0.9546    | 7.36             | 10.23            | 13.84          | 5.40    | 27.54      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams)              | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_infer.tar) |
| ResNeSt101              | 0.8279    | 0.9642    |              |             |           | 10.25    | 48.40      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt101_pretrained.pdparams)              | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt101_infer.tar) |
| ResNeSt200              | 0.8418    | 0.9698    |              |             |           | 17.50    | 70.41      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt200_pretrained.pdparams)              | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt200_infer.tar) |
| ResNeSt269              | 0.8444    |0.9698    |              |             |           | 22.54    | 111.23      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt269_pretrained.pdparams)              | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt269_infer.tar) |
G
gaotingquan 已提交
338 339 340 341 342 343 344 345 346

<a name="RegNet"></a>

## RegNet 系列 <sup>[[25](#ref25)]</sup>

RegNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[RegNet 系列模型文档](RegNet.md)

| 模型                   | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                      | inference模型下载地址                          |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
weixin_46524038's avatar
weixin_46524038 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359
| RegNetX_200MF            | 0.680     | 0.8842    |              |              |           | 0.20        | 2.74      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_200MF_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_200MF_infer.tar) |
| RegNetX_400MF            | 0.723     | 0.9078    |              |              |           | 0.40        | 5.19      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_400MF_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_400MF_infer.tar) |
| RegNetX_600MF            | 0.737     | 0.9198    |              |              |           | 0.61        | 6.23      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_600MF_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_600MF_infer.tar) |
| RegNetX_800MF            | 0.751     | 0.9250    |              |              |           | 0.81        | 7.30      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_800MF_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_800MF_infer.tar) |
| RegNetX_1600MF            | 0.767     | 0.9329    |              |              |           | 1.62        | 9.23      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_1600MF_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_1600MF_infer.tar) |
| RegNetX_3200MF            | 0.781     | 0.9413    |              |              |           | 3.20        | 15.36      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_3200MF_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_3200MF_infer.tar) |
| RegNetX_4GF            | 0.785     | 0.9416    | 6.46             | 8.48             |      11.45     | 3.99        | 22.16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_4GF_infer.tar) |
| RegNetX_6400MF            | 0.790     | 0.9461    |              |              |           | 6.49        | 26.28      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_6400MF_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_6400MF_infer.tar) |
| RegNetX_8GF            | 0.793     | 0.9464    |              |              |           | 8.02        | 39.66      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_8GF_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_8GF_infer.tar) |
| RegNetX_12GF            | 0.797     | 0.9501    |              |              |           | 12.13        | 46.20      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_12GF_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_12GF_infer.tar) |
| RegNetX_16GF            | 0.801     | 0.9505    |              |              |           | 15.99        | 54.39      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_16GF_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_16GF_infer.tar) |
| RegNetX_32GF            | 0.803     | 0.9526    |              |              |           | 32.33        | 130.67      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_32GF_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_32GF_infer.tar) |

G
gaotingquan 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

<a name="RepVGG"></a>

## RepVGG 系列 <sup>[[36](#ref36)]</sup>

关于 RepVGG 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[RepVGG 系列模型文档](RepVGG.md)

| 模型                     | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| RepVGG_A0   | 0.7131    | 0.9016    |  |  |  | 1.36 | 8.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A0_infer.tar) |
| RepVGG_A1   | 0.7380    | 0.9146    |  |  |  | 2.37 | 12.79 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A1_infer.tar) |
| RepVGG_A2   | 0.7571    | 0.9264    |  |  |  | 5.12 | 25.50 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A2_infer.tar) |
| RepVGG_B0   | 0.7450    | 0.9213    |  |  |  | 3.06 | 14.34 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B0_infer.tar) |
| RepVGG_B1   | 0.7773    | 0.9385    |  |  |  | 11.82 | 51.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1_infer.tar) |
| RepVGG_B2   | 0.7813    | 0.9410    |  |  |  | 18.38 | 80.32 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2_infer.tar) |
| RepVGG_B1g2 | 0.7732    | 0.9359    |  |  |  | 8.82 | 41.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g2_infer.tar) |
| RepVGG_B1g4 | 0.7675    | 0.9335    |  |  |  | 7.31 | 36.13 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g4_infer.tar) |
| RepVGG_B2g4 | 0.7881    | 0.9448    |  |  |  | 11.34 | 55.78 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2g4_infer.tar) |
weixin_46524038's avatar
weixin_46524038 已提交
378 379 380
| RepVGG_B3 | 0.8031    | 0.9517    |  |  |  | 29.16 | 123.19 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3_infer.tar) |
| RepVGG_B3g4 | 0.8005    | 0.9502    |  |  |  | 17.89 | 83.93 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3g4_infer.tar) |
| RepVGG_D2se | 0.8339    | 0.9665    |  |  |  | 36.54 | 133.47 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_D2se_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_D2se_infer.tar) |
G
gaotingquan 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

<a name="MixNet"></a>

## MixNet 系列 <sup>[[29](#ref29)]</sup>

关于 MixNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[MixNet 系列模型文档](MixNet.md)

| 模型     | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址                                           | inference模型下载地址                                        |
| -------- | --------- | --------- | ---------------- | ---------------- | ----------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| MixNet_S | 0.7628    | 0.9299    | 2.31             | 3.63             | 5.20              | 252.977  | 4.167     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_S_infer.tar) |
| MixNet_M | 0.7767    | 0.9364    | 2.84             | 4.60             | 6.62              | 357.119  | 5.065     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_M_infer.tar) |
| MixNet_L | 0.7860    | 0.9437    | 3.16             | 5.55             | 8.03              | 579.017  | 7.384     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_L_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_L_infer.tar) |

<a name="ReXNet"></a>

## ReXNet 系列 <sup>[[30](#ref30)]</sup>

关于 ReXNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[ReXNet 系列模型文档](ReXNet.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| ReXNet_1_0 | 0.7746    | 0.9370    | 3.08 | 4.15 | 5.49 | 0.415    | 4.84     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_0_infer.tar) |
| ReXNet_1_3 | 0.7913    | 0.9464    | 3.54 | 4.87 | 6.54 | 0.68    | 7.61     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_3_infer.tar) |
| ReXNet_1_5 | 0.8006    | 0.9512    | 3.68 | 5.31 | 7.38 | 0.90    | 9.79     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_5_infer.tar) |
| ReXNet_2_0 | 0.8122    | 0.9536    | 4.30 | 6.54 | 9.19 | 1.56    | 16.45    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_2_0_infer.tar) |
| ReXNet_3_0 | 0.8209    | 0.9612    | 5.74 | 9.49 | 13.62 | 3.44    | 34.83    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_3_0_infer.tar) |

<a name="HarDNet"></a>

## HarDNet 系列 <sup>[[37](#ref37)]</sup>

关于 HarDNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[HarDNet 系列模型文档](HarDNet.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| HarDNet39_ds | 0.7133    |0.8998    | 1.40 | 2.30 | 3.33 | 0.44   |  3.51    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet39_ds_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet39_ds_infer.tar) |
| HarDNet68_ds |0.7362    | 0.9152   | 2.26 | 3.34 | 5.06 | 0.79   | 4.20 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_ds_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_ds_infer.tar) |
| HarDNet68| 0.7546   | 0.9265   | 3.58 | 8.53 | 11.58 | 4.26   | 17.58    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_infer.tar) |
| HarDNet85 | 0.7744   | 0.9355   | 6.24 | 14.85 | 20.57 | 9.09   | 36.69  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet85_infer.tar) |

<a name="DLA"></a>

## DLA 系列 <sup>[[38](#ref38)]</sup>

关于 DLA 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[DLA 系列模型文档](DLA.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| DLA102 | 0.7893    |0.9452    | 4.95 | 8.08 | 12.40 | 7.19   |  33.34    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102_infer.tar) |
| DLA102x2 |0.7885    | 0.9445  | 19.58 | 23.97 | 31.37 | 9.34   | 41.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102x2_infer.tar) |
| DLA102x| 0.781   | 0.9400   | 11.12 | 15.60 | 20.37 | 5.89  | 26.40    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102x_infer.tar) |
| DLA169 | 0.7809  | 0.9409   | 7.70 | 12.25 | 18.90 | 11.59  | 53.50  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA169_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA169_infer.tar) |
| DLA34 | 0.7603   | 0.9298    | 1.83 | 3.37 | 5.98 | 3.07   |  15.76    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA34_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA34_infer.tar) |
| DLA46_c |0.6321   | 0.853   | 1.06 | 2.08 | 3.23 | 0.54   | 1.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46_c_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA46_c_infer.tar) |
| DLA60 | 0.7610   | 0.9292   | 2.78 | 5.36 | 8.29 | 4.26   | 22.08    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60_infer.tar) |
| DLA60x_c | 0.6645   | 0.8754   | 1.79 | 3.68 | 5.19 | 0.59   | 1.33  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_c_infer.tar) |
| DLA60x | 0.7753  | 0.9378  | 5.98 | 9.24 | 12.52 | 3.54   | 17.41  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_infer.tar) |

<a name="RedNet"></a>

## RedNet 系列 <sup>[[39](#ref39)]</sup>

关于 RedNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[RedNet 系列模型文档](RedNet.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| RedNet26 | 0.7595   |0.9319  | 4.45 | 15.16 | 29.03 | 1.69   |  9.26    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet26_infer.tar) |
| RedNet38 |0.7747  | 0.9356  | 6.24 | 21.39 | 41.26 | 2.14   | 12.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet38_infer.tar) |
| RedNet50| 0.7833  | 0.9417   | 8.04 | 27.71 | 53.73 | 2.61   | 15.60    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet50_infer.tar) |
| RedNet101 | 0.7894  | 0.9436   | 13.07 | 44.12 | 83.28 | 4.59  | 25.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet101_infer.tar) |
| RedNet152 | 0.7917  | 0.9440   | 18.66 | 63.27 | 119.48 | 6.57  | 34.14  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet152_infer.tar) |

<a name="ConvNeXt"></a>

## ConvNeXt 系列 <sup>[[43](#ref43)]</sup>

关于 ConvNeXt 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[ConvNeXt 系列模型文档](ConvNeXt.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| ConvNeXt_tiny | 0.8203 | 0.9590 | - | - | - | 4.458 | 28.583 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_tiny_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ConvNeXt_tiny_infer.tar) |
weixin_46524038's avatar
weixin_46524038 已提交
462 463 464 465 466
| ConvNeXt_small | 0.8313 | 0.9643 | - | - | - | 8.688 | 50.210 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ConvNeXt_small_infer.tar) |
| ConvNeXt_base_224 | 0.8384 | 0.9676 | - | - | - | 15.360 | 88.573 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_base_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ConvNeXt_base_224_infer.tar) |
| ConvNeXt_base_384 | 0.8490 | 0.9727 | - | - | - | 45.138 | 88.573 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_base_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ConvNeXt_base_384_infer.tar) |
| ConvNeXt_large_224 | 0.8426 | 0.9690 | - | - | - | 34.340 | 197.740 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_large_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ConvNeXt_large_224_infer.tar) |
| ConvNeXt_large_384 | 0.8527 | 0.9749 | - | - | - | 101.001 | 197.740 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_large_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ConvNeXt_large_384_infer.tar) |
G
gaotingquan 已提交
467 468 469 470 471 472 473 474 475 476

<a name="VAN"></a>

## VAN 系列 <sup>[[44](#ref44)]</sup>

关于 VAN 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[VAN 系列模型文档](VAN.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| VAN_B0 | 0.7535 | 0.9299  | - | - | - | 0.880 | 4.110 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B0_infer.tar) |
weixin_46524038's avatar
weixin_46524038 已提交
477 478 479
| VAN_B1 | 0.8102 | 0.9562  | - | - | - | 2.518 | 13.869 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B1_infer.tar) |
| VAN_B2 | 0.8280 | 0.9620  | - | - | - | 5.032 | 26.592 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B2_infer.tar) |
| VAN_B3 | 0.8389 | 0.9668  | - | - | - | 8.987 | 44.790 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B3_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B3_infer.tar) |
G
gaotingquan 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727

<a name="PeleeNet"></a>

## PeleeNet 系列 <sup>[[45](#ref45)]</sup>

关于 PeleeNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[PeleeNet 系列模型文档](PeleeNet.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| PeleeNet | 0.7153   | 0.9040 | - | - | - | 0.514 |  2.812 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PeleeNet_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PeleeNet_infer.tar) |

<a name="CSPNet"></a>

## CSPNet 系列 <sup>[[46](#ref46)]</sup>

关于 CSPNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[CSPNet 系列模型文档](CSPNet.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| CSPDarkNet53 | 0.7725 | 0.9355  | - | - | - | 5.041 | 27.678 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSPDarkNet53_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSPDarkNet53_infer.tar) |

<a name="Others"></a>

## 其他模型

关于 AlexNet <sup>[[18](#ref18)]</sup>、SqueezeNet 系列 <sup>[[19](#ref19)]</sup>、VGG 系列 <sup>[[20](#ref20)]</sup>、DarkNet53 <sup>[[21](#ref21)]</sup> 等模型的精度、速度指标如下表所示,更多介绍可以参考:[其他模型文档](Others.md)

| 模型                     | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| AlexNet       | 0.567 | 0.792 | 0.81 | 1.50             | 2.33 | 0.71 | 61.10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/AlexNet_infer.tar) |
| SqueezeNet1_0 | 0.596 | 0.817 | 0.68             | 1.64             | 2.62    | 0.78 | 1.25 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SqueezeNet1_0_infer.tar) |
| SqueezeNet1_1 | 0.601 | 0.819 | 0.62             | 1.30             | 2.09 | 0.35   | 1.24 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SqueezeNet1_1_infer.tar) |
| VGG11 | 0.693 | 0.891 | 1.72             | 4.15             | 7.24 | 7.61 | 132.86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG11_infer.tar) |
| VGG13 | 0.700 | 0.894 | 2.02             | 5.28             | 9.54 | 11.31 | 133.05 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG13_infer.tar) |
| VGG16 | 0.720 | 0.907 | 2.48             | 6.79             | 12.33 | 15.470 | 138.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG16_infer.tar) |
| VGG19 | 0.726 | 0.909 | 2.93             | 8.28             | 15.21 | 19.63 | 143.66 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG19_infer.tar) |
| DarkNet53 | 0.780 | 0.941 | 2.79 | 6.42 | 10.89 | 9.31 | 41.65 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DarkNet53_infer.tar) |

<a name="CNN_lite"></a>

### 3.2 轻量级模型

<a name="Mobile"></a>

## 移动端系列 <sup>[[3](#ref3)][[4](#ref4)][[5](#ref5)][[6](#ref6)][[23](#ref23)]</sup>

移动端系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[MobileNetV1 系列模型文档](MobileNetV1.md)[MobileNetV2 系列模型文档](MobileNetV2.md)[MobileNetV3 系列模型文档](MobileNetV3.md)[ShuffleNetV2 系列模型文档](ShuffleNetV2.md)[GhostNet 系列模型文档](GhostNet.md)[ESNet 系列模型文档](ESNet.md)

| 模型          | Top-1 Acc | Top-5 Acc | SD855 time(ms)<br>bs=1, thread=1 | SD855 time(ms)<br/>bs=1, thread=2 | SD855 time(ms)<br/>bs=1, thread=4 | FLOPs(M) | Params(M) | <span style="white-space:nowrap;">模型大小(M)</span> | 预训练模型下载地址 | inference模型下载地址 |
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| MobileNetV1_<br>x0_25                | 0.5143    | 0.7546    | 2.88 | 1.82  | 1.26  | 43.56     | 0.48      | 1.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_25_infer.tar) |
| MobileNetV1_<br>x0_5                 | 0.6352    | 0.8473    | 8.74                             | 5.26                              | 3.09                              | 154.57     | 1.34      | 5.2     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_5_infer.tar) |
| MobileNetV1_<br>x0_75                | 0.6881    | 0.8823    | 17.84 | 10.61 | 6.21 | 333.00     | 2.60      | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_75_infer.tar) |
| MobileNetV1                      | 0.7099    | 0.8968    | 30.24 | 17.86 | 10.30 | 578.88     | 4.25      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams)                      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_infer.tar) |
| MobileNetV1_<br>ssld                 | 0.7789    | 0.9394    | 30.24                            | 17.86                             | 10.30                             | 578.88     | 4.25      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_ssld_infer.tar) |
| MobileNetV2_<br>x0_25                | 0.5321    | 0.7652    | 3.46 | 2.51 | 2.03 | 34.18     | 1.53       | 6.1     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_25_infer.tar) |
| MobileNetV2_<br>x0_5                 | 0.6503    | 0.8572    | 7.69 | 4.92  | 3.57  | 99.48     | 1.98      | 7.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_5_infer.tar) |
| MobileNetV2_<br>x0_75                | 0.6983    | 0.8901    | 13.69 | 8.60 | 5.82 | 197.37     | 2.65      | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_75_infer.tar) |
| MobileNetV2                      | 0.7215    | 0.9065    | 20.74 | 12.71 | 8.10 | 327.84      | 3.54      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams)                      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_infer.tar) |
| MobileNetV2_<br>x1_5                 | 0.7412    | 0.9167    | 40.79 | 24.49 | 15.50 | 702.35     | 6.90      | 26      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x1_5_infer.tar) |
| MobileNetV2_<br>x2_0                 | 0.7523    | 0.9258    | 67.50 | 40.03 | 25.55 | 1217.25     | 11.33     | 43      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x2_0_infer.tar) |
| MobileNetV2_<br>ssld                 | 0.7674    | 0.9339    | 20.74                            | 12.71                             | 8.10                              | 327.84      | 3.54      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_ssld_infer.tar) |
| MobileNetV3_<br>large_x1_25          | 0.7641    | 0.9295    | 24.52 | 14.76 | 9.89 | 362.70    | 7.47      | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_25_infer.tar) |
| MobileNetV3_<br>large_x1_0           | 0.7532    | 0.9231    | 16.55 | 10.09 | 6.84 | 229.66     | 5.50      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_infer.tar) |
| MobileNetV3_<br>large_x0_75          | 0.7314    | 0.9108    | 11.53  | 7.06  | 4.94  | 151.70    | 3.93      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_75_infer.tar) |
| MobileNetV3_<br>large_x0_5           | 0.6924    | 0.8852    | 6.50 | 4.22  | 3.15 | 71.83    | 2.69      | 11      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_5_infer.tar) |
| MobileNetV3_<br>large_x0_35          | 0.6432    | 0.8546    | 4.43 | 3.11  | 2.41 | 40.90    | 2.11       | 8.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_35_infer.tar) |
| MobileNetV3_<br>small_x1_25          | 0.7067    | 0.8951    | 7.88   | 4.91  | 3.45  | 100.07    | 3.64      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_25_infer.tar) |
| MobileNetV3_<br>small_x1_0           | 0.6824    | 0.8806    | 5.63   | 3.65  | 2.60 | 63.67    | 2.95      | 12      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_infer.tar) |
| MobileNetV3_<br>small_x0_75          | 0.6602    | 0.8633    | 4.50  | 2.96  | 2.19  | 46.02    | 2.38      | 9.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_75_infer.tar) |
| MobileNetV3_<br>small_x0_5           | 0.5921    | 0.8152    | 2.89 | 2.04 | 1.62  | 22.60    | 1.91       | 7.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_5_infer.tar) |
| MobileNetV3_<br>small_x0_35          | 0.5303    | 0.7637    | 2.23  | 1.66    | 1.43   | 14.56    | 1.67      | 6.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_infer.tar) |
| MobileNetV3_<br>small_x0_35_ssld          | 0.5555    | 0.7771    | 2.23 | 1.66 | 1.43 | 14.56    | 1.67      | 6.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_ssld_infer.tar) |
| MobileNetV3_<br>large_x1_0_ssld      | 0.7896    | 0.9448    | 16.55                            | 10.09                             | 6.84                              | 229.66     | 5.50      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_ssld_infer.tar) |
| MobileNetV3_small_<br>x1_0_ssld      | 0.7129    | 0.9010    | 5.63                             | 3.65                              | 2.60                              | 63.67    | 2.95      | 12      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_ssld_infer.tar) |
| ShuffleNetV2                     | 0.6880    | 0.8845    | 9.72  | 5.97   | 4.13    | 148.86     | 2.29      | 9       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams)                     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x1_0_infer.tar) |
| ShuffleNetV2_<br>x0_25               | 0.4990    | 0.7379    | 1.94    | 1.53   | 1.43    | 18.95     | 0.61       | 2.7     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_25_infer.tar) |
| ShuffleNetV2_<br>x0_33               | 0.5373    | 0.7705    | 2.23 | 1.70 | 1.79   | 24.04     | 0.65      | 2.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_33_infer.tar) |
| ShuffleNetV2_<br>x0_5                | 0.6032    | 0.8226    | 3.67   | 2.63   | 2.06   | 42.58     | 1.37      | 5.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_5_infer.tar) |
| ShuffleNetV2_<br>x1_5                | 0.7163    | 0.9015    | 17.21 | 10.56 | 6.81  | 301.35     | 3.53      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x1_5_infer.tar) |
| ShuffleNetV2_<br>x2_0                | 0.7315    | 0.9120    | 31.21 | 18.98 | 11.65 | 571.70     | 7.40      | 28      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x2_0_infer.tar) |
| ShuffleNetV2_<br>swish               | 0.7003    | 0.8917    | 31.21 | 9.06 | 5.74 | 148.86     | 2.29      | 9.1     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_swish_infer.tar) |
| GhostNet_<br>x0_5                    | 0.6688    | 0.8695    | 5.28   | 3.95   | 3.29  | 46.15    | 2.60       | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x0_5_infer.tar) |
| GhostNet_<br>x1_0                    | 0.7402    | 0.9165    | 12.89 | 8.66 | 6.72 | 148.78    | 5.21       | 20      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_0_infer.tar) |
| GhostNet_<br>x1_3                    | 0.7579    | 0.9254    | 19.16 | 12.25 | 9.40 | 236.89     | 7.38       | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_infer.tar) |
| GhostNet_<br>x1_3_ssld                    | 0.7938    | 0.9449    | 19.16                            | 12.25                             | 9.40                              | 236.89     | 7.38       | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_ssld_infer.tar) |
| ESNet_x0_25 | 0.6248 | 0.8346 |4.12|2.97|2.51| 30.85 | 2.83 | 11 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_25_pretrained.pdparams) |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_25_infer.tar) |
| ESNet_x0_5 | 0.6882 | 0.8804 |6.45|4.42|3.35| 67.31 | 3.25 | 13 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_5_pretrained.pdparams)               |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_5_infer.tar)               |
| ESNet_x0_75 | 0.7224 | 0.9045 |9.59|6.28|4.52| 123.74 | 3.87 | 15 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_75_pretrained.pdparams)               |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_75_infer.tar)               |
| ESNet_x1_0 | 0.7392 | 0.9140 |13.67|8.71|5.97| 197.33 | 4.64 | 18 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x1_0_pretrained.pdparams)               |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x1_0_infer.tar)               |

<a name="PPLCNet"></a>

## PP-LCNet & PP-LCNetV2 系列 <sup>[[28](#ref28)]</sup>

PP-LCNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[PP-LCNet 系列模型文档](PP-LCNet.md)[PP-LCNetV2 系列模型文档](PP-LCNetV2.md)

| 模型           | Top-1 Acc | Top-5 Acc | time(ms)<sup>*</sup><br>bs=1 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|:--:|:--:|:--:|:--:|----|----|----|:--:|
| PPLCNet_x0_25        |0.5186           | 0.7565   | 1.74 | 18.25    | 1.52  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_25_infer.tar) |
| PPLCNet_x0_35        |0.5809           | 0.8083   | 1.92 | 29.46    | 1.65  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_35_infer.tar) |
| PPLCNet_x0_5         |0.6314           | 0.8466   | 2.05 | 47.28    | 1.89  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_5_infer.tar) |
| PPLCNet_x0_75        |0.6818           | 0.8830   | 2.29 | 98.82    | 2.37  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_75_infer.tar) |
| PPLCNet_x1_0         |0.7132           | 0.9003   | 2.46 | 160.81   | 2.96  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_infer.tar) |
| PPLCNet_x1_5         |0.7371           | 0.9153   | 3.19 | 341.86   | 4.52  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_5_infer.tar) |
| PPLCNet_x2_0         |0.7518           | 0.9227   | 4.27 | 590   | 6.54  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_0_infer.tar) |
| PPLCNet_x2_5         |0.7660           | 0.9300   | 5.39 | 906   | 9.04  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_infer.tar) |

| 模型           | Top-1 Acc | Top-5 Acc | time(ms)<sup>**</sup><br>bs=1 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|:--:|:--:|:--:|:--:|----|----|----|:--:|
| PPLCNetV2_base  | 77.04 | 93.27 | 4.32 | 604 | 6.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNetV2_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNetV2_base_infer.tar) |

*: 基于 Intel-Xeon-Gold-6148 硬件平台与 PaddlePaddle 推理平台。

**: 基于 Intel-Xeon-Gold-6271C 硬件平台与 OpenVINO 2021.4.2 推理平台。

<a name="Transformer_based"></a>

### 四、Transformer 系列模型

<a name="Transformer_server"></a>

### 4.1 服务器端模型

<a name="ViT"></a>

## ViT 系列 <sup>[[31](#ref31)]</sup>

ViT(Vision Transformer) 系列模型的精度、速度指标如下表所示. 更多关于该系列模型的介绍可以参考: [ViT 系列模型文档](ViT.md)

| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|------------------------|
| ViT_small_<br/>patch16_224 | 0.7769  | 0.9342   | 3.71             | 9.05             | 16.72             |   9.41   | 48.60 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_small_patch16_224_infer.tar) |
| ViT_base_<br/>patch16_224 | 0.8195   | 0.9617   | 6.12             | 14.84            | 28.51             |  16.85   | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar) |
| ViT_base_<br/>patch16_384 | 0.8414  | 0.9717   | 14.15            | 48.38            | 95.06             |    49.35     | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_384_infer.tar) |
| ViT_base_<br/>patch32_384 | 0.8176   | 0.9613   | 4.94             | 13.43            | 24.08             | 12.66 | 88.19 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch32_384_infer.tar) |
| ViT_large_<br/>patch16_224 | 0.8323  | 0.9650   | 15.53            | 49.50            | 94.09             | 59.65 | 304.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_224_infer.tar) |
|ViT_large_<br/>patch16_384| 0.8513 | 0.9736    | 39.51            | 152.46           | 304.06            | 174.70   | 304.12    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_384_infer.tar) |
|ViT_large_<br/>patch32_384| 0.8153 | 0.9608    | 11.44            | 36.09            | 70.63             | 44.24    | 306.48    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch32_384_infer.tar) |

<a name="DeiT"></a>

## DeiT 系列 <sup>[[32](#ref32)]</sup>

DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标如下表所示. 更多关于该系列模型的介绍可以参考: [DeiT 系列模型文档](DeiT.md)

| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|------------------------|
| DeiT_tiny_<br>patch16_224 | 0.718 | 0.910 | 3.61        | 3.94            | 6.10            |   1.07   | 5.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_patch16_224_infer.tar) |
| DeiT_small_<br>patch16_224 | 0.796 | 0.949 | 3.61 | 6.24            | 10.49           |  4.24   | 21.97 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_patch16_224_infer.tar) |
| DeiT_base_<br>patch16_224 | 0.817 | 0.957 | 6.13             | 14.87            |      28.50      |    16.85     | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_224_infer.tar) |
| DeiT_base_<br>patch16_384 | 0.830 | 0.962 | 14.12            | 48.80            | 97.60 | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_384_infer.tar) |
| DeiT_tiny_<br>distilled_patch16_224 | 0.741 | 0.918 | 3.51             | 4.05             | 6.03 | 1.08 | 5.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_distilled_patch16_224_infer.tar) |
| DeiT_small_<br>distilled_patch16_224 | 0.809 | 0.953 | 3.70             | 6.20             | 10.53 | 4.26 | 22.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_distilled_patch16_224_infer.tar) |
| DeiT_base_<br>distilled_patch16_224 | 0.831 | 0.964 | 6.17             | 14.94            | 28.58 | 16.93 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_224_infer.tar) |
| DeiT_base_<br>distilled_patch16_384 | 0.851 | 0.973 | 14.12            | 48.76            | 97.09 | 49.43 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_384_infer.tar) |

<a name="SwinTransformer"></a>

## SwinTransformer 系列 <sup>[[27](#ref27)]</sup>

关于 SwinTransformer 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[SwinTransformer 系列模型文档](SwinTransformer.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| SwinTransformer_tiny_patch4_window7_224    | 0.8069 | 0.9534 | 6.59 | 9.68 | 16.32 | 4.35  | 28.26   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_tiny_patch4_window7_224_infer.tar) |
| SwinTransformer_small_patch4_window7_224   | 0.8275 | 0.9613 | 12.54 | 17.07 | 28.08 | 8.51  | 49.56   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_small_patch4_window7_224_infer.tar) |
| SwinTransformer_base_patch4_window7_224    | 0.8300 | 0.9626 | 13.37 | 23.53 | 39.11 | 15.13 | 87.70   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) |
| SwinTransformer_base_patch4_window12_384   | 0.8439 | 0.9693 | 19.52 | 64.56 | 123.30 | 44.45 | 87.70   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) |
| SwinTransformer_base_patch4_window7_224<sup>[1]</sup>     | 0.8487 | 0.9746 | 13.53 | 23.46 | 39.13 | 15.13 | 87.70   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) |
| SwinTransformer_base_patch4_window12_384<sup>[1]</sup>    | 0.8642 | 0.9807 | 19.65 | 64.72 | 123.42 | 44.45 | 87.70   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) |
| SwinTransformer_large_patch4_window7_224<sup>[1]</sup>    | 0.8596 | 0.9783 | 15.74 | 38.57 | 71.49 | 34.02 | 196.43  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_22kto1k_infer.tar) |
| SwinTransformer_large_patch4_window12_384<sup>[1]</sup>   | 0.8719 | 0.9823 | 32.61 | 116.59 | 223.23 | 99.97 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_22kto1k_infer.tar) |

[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。

<a name="Twins"></a>

## Twins 系列 <sup>[[34](#ref34)]</sup>

关于 Twins 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[Twins 系列模型文档](Twins.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| pcpvt_small | 0.8082    | 0.9552    | 7.32 | 10.51 | 15.27 |3.67    | 24.06    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_small_infer.tar) |
| pcpvt_base | 0.8242    | 0.9619    | 12.20 | 16.22 | 23.16 | 6.44    | 43.83    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_base_infer.tar) |
| pcpvt_large | 0.8273    | 0.9650    | 16.47 | 22.90 | 32.73 | 9.50    | 60.99     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_large_infer.tar) |
| alt_gvt_small | 0.8140    | 0.9546    | 6.94 | 9.01 | 12.27 |2.81   | 24.06   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_small_infer.tar) |
| alt_gvt_base | 0.8294   | 0.9621    | 9.37 | 15.02 | 24.54 | 8.34   | 56.07   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_base_infer.tar) |
| alt_gvt_large | 0.8331   | 0.9642    | 11.76 | 22.08 | 35.12 | 14.81   | 99.27    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_large_infer.tar) |

**注**:与 Reference 的精度差异源于数据预处理不同。

<a name="CSWinTransformer"></a>

## CSWinTransformer 系列 <sup>[[40](#ref40)]</sup>

关于 CSWinTransformer 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[CSWinTransformer 系列模型文档](CSWinTransformer.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| CSWinTransformer_tiny_224    | 0.8281 | 0.9628 | - | - | - | 4.1  | 22   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_tiny_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSWinTransformer_tiny_224_infer.tar) |
| CSWinTransformer_small_224   | 0.8358 | 0.9658 | - | - | - | 6.4 | 35  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_small_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSWinTransformer_small_224_infer.tar) |
| CSWinTransformer_base_224    | 0.8420 | 0.9692 | - | - | - | 14.3 | 77   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_base_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSWinTransformer_base_224_infer.tar) |
| CSWinTransformer_large_224   | 0.8643 | 0.9799 | - | - | - | 32.2 | 173.3   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_large_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSWinTransformer_large_224_infer.tar) |
| CSWinTransformer_base_384     | 0.8550 | 0.9749 | - | - |- | 42.2 | 77   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_base_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSWinTransformer_base_384_infer.tar) |
| CSWinTransformer_large_384    | 0.8748 | 0.9833 | - | - | - | 94.7 | 173.3 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_large_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSWinTransformer_large_384_infer.tar) |

<a name="PVTV2"></a>

## PVTV2 系列 <sup>[[41](#ref41)]</sup>

关于 PVTV2 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[PVTV2 系列模型文档](PVTV2.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| PVT_V2_B0    | 0.7052 | 0.9016 | - | - | - | 0.53  | 3.7   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B0_infer.tar) |
| PVT_V2_B1   |  0.7869 | 0.9450 | - | - | - | 2.0 | 14.0  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B1_infer.tar) |
| PVT_V2_B2    | 0.8206 | 0.9599 | - | - | - | 3.9 | 25.4   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B2_infer.tar) |
| PVT_V2_B2_Linear   | 0.8205 | 0.9605 | - | - | - | 3.8 | 22.6   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_Linear_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B2_Linear_infer.tar) |
| PVT_V2_B3     | 0.8310 | 0.9648 | - | - |- | 6.7 | 45.2   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B3_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B3_infer.tar) |
| PVT_V2_B4    | 0.8361 | 0.9666 | - | - | - | 9.8 | 62.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B4_infer.tar) |
| PVT_V2_B5    | 0.8374 | 0.9662 | - | - | - | 11.4 | 82.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B5_infer.tar) |

<a name="LeViT"></a>

## LeViT 系列 <sup>[[33](#ref33)]</sup>

关于 LeViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[LeViT 系列模型文档](LeViT.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| LeViT_128S | 0.7598    | 0.9269    |                  |                  |                  | 281    | 7.42     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128S_infer.tar) |
| LeViT_128 | 0.7810    | 0.9371    |                  |                  |                  | 365    | 8.87     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128_infer.tar) |
| LeViT_192 | 0.7934    | 0.9446    |                  |                  |                  | 597    | 10.61     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_192_infer.tar) |
| LeViT_256 | 0.8085    | 0.9497    |                  |                  |                  | 1049    | 18.45    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_256_infer.tar) |
| LeViT_384 | 0.8191   | 0.9551    |                  |                  |                  | 2234    | 38.45    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_384_infer.tar) |

**注**:与 Reference 的精度差异源于数据预处理不同及未使用蒸馏的 head 作为输出。

<a name="TNT"></a>

## TNT 系列 <sup>[[35](#ref35)]</sup>

关于 TNT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[TNT 系列模型文档](TNT.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
weixin_46524038's avatar
weixin_46524038 已提交
728 729
| TNT_small | 0.8148   |0.9580  |                  |                  | 4.83   |  23.69    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/TNT_small_infer.tar) |
| TNT_base | 0.8276   |0.9617  |                  |                  | 13.40   |  65.30    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/TNT_base_infer.tar) |
G
gaotingquan 已提交
730 731 732

**注**:TNT 模型的数据预处理部分 `NormalizeImage` 中的 `mean``std` 均为 0.5。

C
cuicheng01 已提交
733
<a name="NextViT"></a>
weixin_46524038's avatar
weixin_46524038 已提交
734
## NextViT 系列 <sup>[[47](#ref47)]</sup>
C
cuicheng01 已提交
735 736

关于 NextViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[NextViT 系列模型文档](NextViT.md)
C
cuicheng01 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750
| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| NextViT_small_224    | 0.8248 | 0.9616 | - | - | - | 5.79  | 31.80   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_small_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_small_224_infer.tar) |
| NextViT_base_224   | 0.8324 | 0.9658 | - | - | - | 8.26  | 44.88   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_base_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_base_224_infer.tar) |
| NextViT_large_224    | 0.8363 | 0.9661 | - | - | - | 10.73 | 57.95   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_large_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_large_224_infer.tar) |
| NextViT_small_384   | 0.8401 | 0.9698 | - | - | - | 17.00 | 31.80   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_small_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_small_384_infer.tar) |
| NextViT_base_384   | 0.8465 | 0.9723 | - | - | - | 24.27 | 44.88   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_base_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_base_384_infer.tar) |
| NextViT_large_384   | 0.8492 | 0.9728 | - | - | - | 31.53 | 57.95   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_large_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_large_384_infer.tar) |
| NextViT_small_224_ssld    | 0.8472 | 0.9734 | - | - | - | 5.79  | 31.80   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_small_224_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_small_224_ssld_infer.tar) |
| NextViT_base_224_ssld   | 0.8500 | 0.9753 | - | - | - | 8.26  | 44.88   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_base_224_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_base_224_ssld_infer.tar) |
| NextViT_large_224_ssld    | 0.8536 | 0.9762 | - | - | - | 10.73 | 57.95   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_large_224_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_large_224_ssld_infer.tar) |
| NextViT_small_384_ssld   | 0.8597 | 0.9790 | - | - | - | 17.00 | 31.80   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_small_384_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_small_384_ssld_infer.tar) |
| NextViT_base_384_ssld   | 0.8634 | 0.9806 | - | - | - | 24.27 | 44.88   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_base_384_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_base_384_ssld_infer.tar) |
| NextViT_large_384_ssld   | 0.8654 | 0.9814 | - | - | - | 31.53 | 57.95   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/NextViT_large_384_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/NextViT_large_384_ssld_infer.tar) |
C
cuicheng01 已提交
751

weixin_46524038's avatar
weixin_46524038 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765
<a name="UniFormer"></a>

## UniFormer 系列 <sup>[[48](#ref48)]</sup>

关于 UniFormer 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[UniFomer 系列模型文档](UniFormer.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| UniFormer_small    | 0.8294 | 0.9631 | - | - | - | 3.44  | 21.55   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_small_infer.tar) |
| UniFormer_small_plus    | 0.8329 | 0.9656 | - | - | - | 3.99 | 24.04  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_small_plus_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_small_plus_infer.tar) |
| UniFormer_small_plus_dim64    | 0.8325 | 0.9649 | - | - | - | 3.99 | 24.04   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_small_plus_dim64_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_small_plus_dim64_infer.tar) |
| UniFormer_base     | 0.8376 | 0.9672 | - | - |- | 7.77 | 49.78   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_base_infer.tar) |
| UniFormer_base_ls    | 0.8398 | 0.9675 | - | - | - | 7.77 | 49.78 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/UniFormer_base_ls_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/UniFormer_base_ls_infer.tar) |

L
LittleMoon 已提交
766 767 768 769 770 771 772 773 774 775 776
<a name="DSNet"></a>

## DSNet 系列 <sup>[[49](#ref49)]</sup>

关于 DSNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[DSNet 系列模型文档](DSNet.md)

| 模型        | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                           | inference模型下载地址                                        |
| ----------- | --------- | --------- | ---------------- | ---------------- | ----------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| DSNet_tiny  | 0.7919    | 0.9476    | -                | -                | -                 | 1.8      | 10.5      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DSNet_tiny_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DSNet_tiny_infer.tar) |
| DSNet_small | 0.8137    | 0.9544    | -                | -                | -                 | 3.5      | 23.0      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DSNet_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DSNet_small_infer.tar) |
| DSNet_base  | 0.8175    | 0.9522    | -                | -                | -                 | 8.4      | 49.3      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DSNet_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DSNet_base_infer.tar) |
weixin_46524038's avatar
weixin_46524038 已提交
777

G
gaotingquan 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
<a name="Transformer_lite"></a>

### 4.2 轻量级模型

<a name="MobileViT"></a>

## MobileViT 系列 <sup>[[42](#ref42)]</sup>

关于 MobileViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[MobileViT 系列模型文档](MobileViT.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
|  MobileViT_XXS    | 0.6867 | 0.8878 | - | - | - | 337.24  |  1.28   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XXS_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XXS_infer.tar) |
|  MobileViT_XS    | 0.7454 | 0.9227 | - | - | - | 930.75  |  2.33   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XS_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XS_infer.tar) |
|  MobileViT_S    | 0.7814 | 0.9413 | - | - | - | 1849.35  |   5.59   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_S_infer.tar) |

<a name='reference'></a>

## 五、参考文献

<a name="ref1">[1]</a> He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

<a name="ref2">[2]</a> He T, Zhang Z, Zhang H, et al. Bag of tricks for image classification with convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 558-567.

<a name="ref3">[3]</a> Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1314-1324.

<a name="ref4">[4]</a> Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520.

<a name="ref5">[5]</a> Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

<a name="ref6">[6]</a> Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 116-131.

<a name="ref7">[7]</a> Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1492-1500.

<a name="ref8">[8]</a> Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.

<a name="ref9">[9]</a> Gao S, Cheng M M, Zhao K, et al. Res2net: A new multi-scale backbone architecture[J]. IEEE transactions on pattern analysis and machine intelligence, 2019.

<a name="ref10">[10]</a> Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.

<a name="ref11">[11]</a> Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//Thirty-first AAAI conference on artificial intelligence. 2017.

<a name="ref12">[12]</a> Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1251-1258.

<a name="ref13">[13]</a> Wang J, Sun K, Cheng T, et al. Deep high-resolution representation learning for visual recognition[J]. arXiv preprint arXiv:1908.07919, 2019.

<a name="ref14">[14]</a> Chen Y, Li J, Xiao H, et al. Dual path networks[C]//Advances in neural information processing systems. 2017: 4467-4475.

<a name="ref15">[15]</a> Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.

<a name="ref16">[16]</a> Tan M, Le Q V. Efficientnet: Rethinking model scaling for convolutional neural networks[J]. arXiv preprint arXiv:1905.11946, 2019.

<a name="ref17">[17]</a> Mahajan D, Girshick R, Ramanathan V, et al. Exploring the limits of weakly supervised pretraining[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 181-196.

<a name="ref18">[18]</a> Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.

<a name="ref19">[19]</a> Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.

<a name="ref20">[20]</a> Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.

<a name="ref21">[21]</a> Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.

<a name="ref22">[22]</a> Ding X, Guo Y, Ding G, et al. Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1911-1920.

<a name="ref23">[23]</a> Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1580-1589.

<a name="ref24">[24]</a> Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J]. arXiv preprint arXiv:2004.08955, 2020.

<a name="ref25">[25]</a> Radosavovic I, Kosaraju R P, Girshick R, et al. Designing network design spaces[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 10428-10436.

<a name="ref26">[26]</a> C.Szegedy, V.Vanhoucke, S.Ioffe, J.Shlens, and Z.Wojna. Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015.

<a name="ref27">[27]</a> Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows.

<a name="ref28">[28]</a>Cheng Cui, Tingquan Gao, Shengyu Wei, Yuning Du, Ruoyu Guo, Shuilong Dong, Bin Lu, Ying Zhou, Xueying Lv, Qiwen Liu, Xiaoguang Hu, Dianhai Yu, Yanjun Ma. PP-LCNet: A Lightweight CPU Convolutional Neural Network.

<a name="ref29">[29]</a>Mingxing Tan, Quoc V. Le. MixConv: Mixed Depthwise Convolutional Kernels.

<a name="ref30">[30]</a>Dongyoon Han, Sangdoo Yun, Byeongho Heo, YoungJoon Yoo. Rethinking Channel Dimensions for Efficient Model Design.

<a name="ref31">[31]</a>Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE.

<a name="ref32">[32]</a>Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Herve Jegou. Training data-efficient image transformers & distillation through attention.

<a name="ref33">[33]</a>Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Herve Jegou, Matthijs Douze. LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference.

<a name="ref34">[34]</a>Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, Chunhua Shen. Twins: Revisiting the Design of Spatial Attention in Vision Transformers.

<a name="ref35">[35]</a>Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, Yunhe Wang. Transformer in Transformer.

<a name="ref36">[36]</a>Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, Jian Sun. RepVGG: Making VGG-style ConvNets Great Again.

<a name="ref37">[37]</a>Ping Chao, Chao-Yang Kao, Yu-Shan Ruan, Chien-Hsiang Huang, Youn-Long Lin. HarDNet: A Low Memory Traffic Network.

<a name="ref38">[38]</a>Fisher Yu, Dequan Wang, Evan Shelhamer, Trevor Darrell. Deep Layer Aggregation.

<a name="ref39">[39]</a>Duo Lim Jie Hu, Changhu Wang, Xiangtai Li, Qi She, Lei Zhu, Tong Zhang, Qifeng Chen. Involution: Inverting the Inherence of Convolution for Visual Recognition.

<a name="ref40">[40]</a>Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen, Baining Guo. CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows.

<a name="ref41">[41]</a>Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. PVTv2: Improved Baselines with Pyramid Vision Transformer.

<a name="ref42">[42]</a>Sachin Mehta, Mohammad Rastegari. MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer.

<a name="ref43">[43]</a>Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie. A ConvNet for the 2020s.

<a name="ref44">[44]</a>Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu. Visual Attention Network.

<a name="ref45">[45]</a>Robert J. Wang, Xiang Li, Charles X. Ling. Pelee: A Real-Time Object Detection System on Mobile Devices

<a name="ref46">[46]</a>Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau Yeh, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh. CSPNet: A New Backbone that can Enhance Learning Capability of CNN
C
cuicheng01 已提交
890

weixin_46524038's avatar
weixin_46524038 已提交
891 892 893
<a name="ref47">[47]</a>Jiashi Li, Xin Xia, Wei Li, Huixia Li, Xing Wang, Xuefeng Xiao, Rui Wang, Min Zheng, Xin Pan. Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios.

<a name="ref48">[48]</a>Kunchang Li, Yali Wang, Junhao Zhang, Peng Gao, Guanglu Song, Yu Liu, Hongsheng Li, Yu Qiao. UniFormer: Unifying Convolution and Self-attention for Visual Recognition
L
LittleMoon 已提交
894 895

<a name="ref49">[49]</a>Mingyuan Mao, Renrui Zhang, Honghui Zheng, Peng Gao, Teli Ma, Yan Peng, Errui Ding, Baochang Zhang, Shumin Han. Dual-stream Network for Visual Recognition.