Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
fdaf24ee
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fdaf24ee
编写于
12月 19, 2022
作者:
weixin_46524038
提交者:
cuicheng01
12月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add models
上级
885e1bc0
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
454 addition
and
73 deletion
+454
-73
docs/zh_CN/models/ImageNet1k/ConvNeXt.md
docs/zh_CN/models/ImageNet1k/ConvNeXt.md
+5
-0
docs/zh_CN/models/ImageNet1k/README.md
docs/zh_CN/models/ImageNet1k/README.md
+31
-5
docs/zh_CN/models/ImageNet1k/RegNet.md
docs/zh_CN/models/ImageNet1k/RegNet.md
+12
-1
docs/zh_CN/models/ImageNet1k/RepVGG.md
docs/zh_CN/models/ImageNet1k/RepVGG.md
+3
-1
docs/zh_CN/models/ImageNet1k/ResNeSt.md
docs/zh_CN/models/ImageNet1k/ResNeSt.md
+5
-2
docs/zh_CN/models/ImageNet1k/TNT.md
docs/zh_CN/models/ImageNet1k/TNT.md
+2
-1
docs/zh_CN/models/ImageNet1k/VAN.md
docs/zh_CN/models/ImageNet1k/VAN.md
+3
-0
ppcls/arch/backbone/model_zoo/convnext.py
ppcls/arch/backbone/model_zoo/convnext.py
+49
-0
ppcls/arch/backbone/model_zoo/regnet.py
ppcls/arch/backbone/model_zoo/regnet.py
+135
-30
ppcls/arch/backbone/model_zoo/repvgg.py
ppcls/arch/backbone/model_zoo/repvgg.py
+86
-13
ppcls/arch/backbone/model_zoo/resnest.py
ppcls/arch/backbone/model_zoo/resnest.py
+41
-2
ppcls/arch/backbone/model_zoo/tnt.py
ppcls/arch/backbone/model_zoo/tnt.py
+39
-18
ppcls/arch/backbone/model_zoo/van.py
ppcls/arch/backbone/model_zoo/van.py
+43
-0
未找到文件。
docs/zh_CN/models/ImageNet1k/ConvNeXt.md
浏览文件 @
fdaf24ee
...
...
@@ -35,6 +35,11 @@ ConvNeXt(Cross Stage Partial Network)系列模型是 Meta 在 2022 年提出
| Models | Top1 | Top5 | Reference
<br>
top1 | Reference
<br>
top5 | FLOPs
<br>
(G) | Params
<br>
(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| ConvNeXt_tiny | 0.8203 | 0.9590 | 0.821 | - | 4.458 | 28.583 |
| ConvNeXt_small | 0.8313 | 0.9643 | 0.831 | - | 8.688 | 50.210 |
| ConvNeXt_base_224 | 0.8384 | 0.9676 | 0.838 | - | 15.360 | 88.573 |
| ConvNeXt_base_384 | 0.8490 | 0.9727 | 0.851 | - | 45.138 | 88.573 |
| ConvNeXt_large_224 | 0.8426 | 0.9690 | 0.843 | - | 34.340 | 197.740 |
| ConvNeXt_large_384 | 0.8527 | 0.9749 | 0.855 | - | 101.001 | 197.740 |
### 1.3 Benchmark
...
...
docs/zh_CN/models/ImageNet1k/README.md
浏览文件 @
fdaf24ee
...
...
@@ -329,8 +329,11 @@ ResNeSt 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| ResNeSt50_
<br>
fast_1s1x64d | 0.8035 | 0.9528 | 2.73 | 5.33 | 8.24 | 4.36 | 26.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_fast_1s1x64d_infer.tar
)
|
| ResNeSt50 | 0.8083 | 0.9542 | 7.36 | 10.23 | 13.84 | 5.40 | 27.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_infer.tar
)
|
| ResNeSt50_
<br>
fast_1s1x64d | 0.8061 | 0.9527 | 2.73 | 5.33 | 8.24 | 4.36 | 26.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_fast_1s1x64d_infer.tar
)
|
| ResNeSt50 | 0.8102 | 0.9546 | 7.36 | 10.23 | 13.84 | 5.40 | 27.54 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_infer.tar
)
|
| ResNeSt101 | 0.8279 | 0.9642 | | | | 10.25 | 48.40 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt101_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt101_infer.tar
)
|
| ResNeSt200 | 0.8418 | 0.9698 | | | | 17.50 | 70.41 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt200_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt200_infer.tar
)
|
| ResNeSt269 | 0.8444 |0.9698 | | | | 22.54 | 111.23 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt269_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt269_infer.tar
)
|
<a
name=
"RegNet"
></a>
...
...
@@ -340,7 +343,19 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| RegNetX_4GF | 0.785 | 0.9416 | 6.46 | 8.48 | 11.45 | 4.00 | 22.23 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_4GF_infer.tar
)
|
| RegNetX_200MF | 0.680 | 0.8842 | | | | 0.20 | 2.74 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_200MF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_200MF_infer.tar
)
|
| RegNetX_400MF | 0.723 | 0.9078 | | | | 0.40 | 5.19 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_400MF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_400MF_infer.tar
)
|
| RegNetX_600MF | 0.737 | 0.9198 | | | | 0.61 | 6.23 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_600MF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_600MF_infer.tar
)
|
| RegNetX_800MF | 0.751 | 0.9250 | | | | 0.81 | 7.30 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_800MF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_800MF_infer.tar
)
|
| RegNetX_1600MF | 0.767 | 0.9329 | | | | 1.62 | 9.23 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_1600MF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_1600MF_infer.tar
)
|
| RegNetX_3200MF | 0.781 | 0.9413 | | | | 3.20 | 15.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_3200MF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_3200MF_infer.tar
)
|
| RegNetX_4GF | 0.785 | 0.9416 | 6.46 | 8.48 | 11.45 | 3.99 | 22.16 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_4GF_infer.tar
)
|
| RegNetX_6400MF | 0.790 | 0.9461 | | | | 6.49 | 26.28 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_6400MF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_6400MF_infer.tar
)
|
| RegNetX_8GF | 0.793 | 0.9464 | | | | 8.02 | 39.66 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_8GF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_8GF_infer.tar
)
|
| RegNetX_12GF | 0.797 | 0.9501 | | | | 12.13 | 46.20 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_12GF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_12GF_infer.tar
)
|
| RegNetX_16GF | 0.801 | 0.9505 | | | | 15.99 | 54.39 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_16GF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_16GF_infer.tar
)
|
| RegNetX_32GF | 0.803 | 0.9526 | | | | 32.33 | 130.67 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_32GF_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_32GF_infer.tar
)
|
<a
name=
"RepVGG"
></a>
...
...
@@ -359,7 +374,9 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| RepVGG_B1g2 | 0.7732 | 0.9359 | | | | 8.82 | 41.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g2_infer.tar
)
|
| RepVGG_B1g4 | 0.7675 | 0.9335 | | | | 7.31 | 36.13 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g4_infer.tar
)
|
| RepVGG_B2g4 | 0.7881 | 0.9448 | | | | 11.34 | 55.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2g4_infer.tar
)
|
| RepVGG_B3g4 | 0.7965 | 0.9485 | | | | 16.07 | 75.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3g4_infer.tar
)
|
| RepVGG_B3 | 0.8031 | 0.9517 | | | | 29.16 | 123.19 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3_infer.tar
)
|
| RepVGG_B3g4 | 0.8005 | 0.9502 | | | | 17.89 | 83.93 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3g4_infer.tar
)
|
| RepVGG_D2se | 0.8339 | 0.9665 | | | | 36.54 | 133.47 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_D2se_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_D2se_infer.tar
)
|
<a
name=
"MixNet"
></a>
...
...
@@ -441,6 +458,11 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| ConvNeXt_tiny | 0.8203 | 0.9590 | - | - | - | 4.458 | 28.583 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_tiny_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ConvNeXt_tiny_infer.tar
)
|
| ConvNeXt_small | 0.8313 | 0.9643 | - | - | - | 8.688 | 50.210 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ConvNeXt_small_infer.tar
)
|
| ConvNeXt_base_224 | 0.8384 | 0.9676 | - | - | - | 15.360 | 88.573 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_base_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ConvNeXt_base_224_infer.tar
)
|
| ConvNeXt_base_384 | 0.8490 | 0.9727 | - | - | - | 45.138 | 88.573 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_base_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ConvNeXt_base_384_infer.tar
)
|
| ConvNeXt_large_224 | 0.8426 | 0.9690 | - | - | - | 34.340 | 197.740 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_large_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ConvNeXt_large_224_infer.tar
)
|
| ConvNeXt_large_384 | 0.8527 | 0.9749 | - | - | - | 101.001 | 197.740 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_large_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ConvNeXt_large_384_infer.tar
)
|
<a
name=
"VAN"
></a>
...
...
@@ -451,6 +473,9 @@ RegNet 系列模型的精度、速度指标如下表所示,更多关于该系
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | time(ms)
<br/>
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| VAN_B0 | 0.7535 | 0.9299 | - | - | - | 0.880 | 4.110 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B0_infer.tar
)
|
| VAN_B1 | 0.8102 | 0.9562 | - | - | - | 2.518 | 13.869 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B1_infer.tar
)
|
| VAN_B2 | 0.8280 | 0.9620 | - | - | - | 5.032 | 26.592 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B2_infer.tar
)
|
| VAN_B3 | 0.8389 | 0.9668 | - | - | - | 8.987 | 44.790 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B3_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VAN_B3_infer.tar
)
|
<a
name=
"PeleeNet"
></a>
...
...
@@ -699,7 +724,8 @@ DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| TNT_small | 0.8121 |0.9563 | | | 4.83 | 23.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/TNT_small_infer.tar
)
|
| TNT_small | 0.8148 |0.9580 | | | 4.83 | 23.69 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/TNT_small_infer.tar
)
|
| TNT_base | 0.8276 |0.9617 | | | 13.40 | 65.30 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/TNT_base_infer.tar
)
|
**注**
:TNT 模型的数据预处理部分
`NormalizeImage`
中的
`mean`
与
`std`
均为 0.5。
...
...
docs/zh_CN/models/ImageNet1k/RegNet.md
浏览文件 @
fdaf24ee
...
...
@@ -35,7 +35,18 @@ RegNet 是由 facebook 于 2020 年提出,旨在深化设计空间理念的概
| Models | Top1 | Top5 | Reference
<br>
top1 | Reference
<br>
top5 | FLOPs
<br>
(G) | Params
<br>
(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| RegNetX_4GF | 0.7850 | 0.9416| 0.7860 | -| 8.0 | 22.1 |
| RegNetX_200MF | 0.6804 | 0.8842| 0.6821 | -| 0.2 | 2.7 |
| RegNetX_400MF | 0.7225 | 0.9078| 0.7228 | -| 0.4 | 5.2 |
| RegNetX_600MF | 0.7366 | 0.9198| 0.7286 | -| 0.6 | 6.2 |
| RegNetX_800MF | 0.7512 | 0.9250| 0.7494 | -| 0.8 | 7.3 |
| RegNetX_1600MF | 0.7673 | 0.9329| 0.7671 | -| 1.6 | 9.2 |
| RegNetX_3200MF | 0.7809 | 0.9413| 0.7819 | -| 3.2 | 15.3 |
| RegNetX_4GF | 0.7850 | 0.9416| 0.7860 | -| 4.0 | 22.2 |
| RegNetX_6400MF | 0.7897 | 0.9461| 0.7915 | -| 6.5 | 26.2 |
| RegNetX_8GF | 0.7928 | 0.9464| 0.7938 | -| 8.0 | 39.7 |
| RegNetX_12GF | 0.7972 | 0.9501| 0.8000 | -| 12.1 | 46.2 |
| RegNetX_16GF | 0.8013 | 0.9505| 0.8012 | -| 16.0 | 54.4 |
| RegNetX_32GF | 0.8032 | 0.9526| 0.8052 | -| 32.33 | 130.67 |
### 1.3 Benchmark
...
...
docs/zh_CN/models/ImageNet1k/RepVGG.md
浏览文件 @
fdaf24ee
...
...
@@ -41,7 +41,9 @@ RepVGG(Making VGG-style ConvNets Great Again)系列模型是由清华大学(丁
| RepVGG_B1g2 | 0.7732 | 0.9359 | 0.7778 | - | - | - |
| RepVGG_B1g4 | 0.7675 | 0.9335 | 0.7758 | - | - | - |
| RepVGG_B2g4 | 0.7881 | 0.9448 | 0.7938 | - | - | - |
| RepVGG_B3g4 | 0.7965 | 0.9485 | 0.8021 | - | - | - |
| RepVGG_B3 | 0.8031 | 0.9517 | 0.8052 | - | - | - |
| RepVGG_B3g4 | 0.8005 | 0.9502 | 0.8021 | - | - | - |
| RepVGG_D2se | 0.8339 | 0.9665 | 0.8355 | - | - | - |
关于 Params、FLOPs、Inference speed 等信息,敬请期待。
...
...
docs/zh_CN/models/ImageNet1k/ResNeSt.md
浏览文件 @
fdaf24ee
...
...
@@ -35,8 +35,11 @@ ResNeSt 系列模型是在 2020 年提出的,在原有的 resnet 网络结构
| Models | Top1 | Top5 | Reference
<br>
top1 | Reference
<br>
top5 | FLOPs
<br>
(G) | Params
<br>
(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| ResNeSt50_fast_1s1x64d | 0.8035 | 0.9528| 0.8035 | -| 8.68 | 26.3 |
| ResNeSt50 | 0.8083 | 0.9542| 0.8113 | -| 10.78 | 27.5 |
| ResNeSt50_fast_1s1x64d | 0.8061 | 0.9527| 0.8035 | -| 5.40 | 26.3 |
| ResNeSt50 | 0.8102 | 0.9546| 0.8103 | -| 5.40 | 27.5 |
| ResNeSt101 | 0.8279 | 0.9642| 0.8283 | -| 10.25 | 48.4 |
| ResNeSt200 | 0.8418 | 0.9698| 0.8384 | -| 17.50 | 70.4 |
| ResNeSt269 | 0.8444 | 0.9698| 0.8454 | -| 22.54 | 111.2 |
### 1.3 Benchmark
...
...
docs/zh_CN/models/ImageNet1k/TNT.md
浏览文件 @
fdaf24ee
...
...
@@ -34,7 +34,8 @@ PaddleClas 所提供的该系列模型的预训练模型权重,均是基于其
| Models | Top1 | Top5 | Reference
<br>
top1 | Reference
<br>
top5 | FLOPs
<br>
(G) | Params
<br>
(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| TNT_small | 0.8121 | 0.9563 | - | - | 5.2 | 23.8 |
| TNT_small | 0.8148 | 0.9580 | 0.815 | - | 4.8 | 23.7 |
| TNT_base | 0.8276 | 0.9617 | 0.829 | - | 13.4 | 65.3 |
**备注:**
PaddleClas 所提供的该系列模型的预训练模型权重,均是基于其官方提供的权重转得。
...
...
docs/zh_CN/models/ImageNet1k/VAN.md
浏览文件 @
fdaf24ee
...
...
@@ -35,6 +35,9 @@ VAN(Visual Attention Network)系列模型是在 2022 年提出的 CNN 架构
| Models | Top1 | Top5 | Reference
<br>
top1 | Reference
<br>
top5 | FLOPs
<br>
(G) | Params
<br>
(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| VAN-B0 | 0.7535 | 0.9299 | 0.754 | - | 0.880 | 4.110 |
| VAN-B1 | 0.8102 | 0.9562 | 0.811 | - | 2.518 | 13.869 |
| VAN-B2 | 0.8280 | 0.9620 | 0.828 | - | 5.032 | 26.592 |
| VAN-B3 | 0.8389 | 0.9668 | 0.839 | - | 8.987 | 44.790 |
### 1.3 Benchmark
...
...
ppcls/arch/backbone/model_zoo/convnext.py
浏览文件 @
fdaf24ee
...
...
@@ -23,6 +23,16 @@ from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_fro
MODEL_URLS
=
{
"ConvNeXt_tiny"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_tiny_pretrained.pdparams"
,
"ConvNeXt_small"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_small_pretrained.pdparams"
,
"ConvNeXt_base_224"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_base_224_pretrained.pdparams"
,
"ConvNeXt_base_384"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_base_384_pretrained.pdparams"
,
"ConvNeXt_large_224"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_large_224_pretrained.pdparams"
,
"ConvNeXt_large_384"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ConvNeXt_large_384_pretrained.pdparams"
}
__all__
=
list
(
MODEL_URLS
.
keys
())
...
...
@@ -231,3 +241,42 @@ def ConvNeXt_tiny(pretrained=False, use_ssld=False, **kwargs):
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ConvNeXt_tiny"
],
use_ssld
=
use_ssld
)
return
model
def
ConvNeXt_small
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
ConvNeXt
(
depths
=
[
3
,
3
,
27
,
3
],
dims
=
[
96
,
192
,
384
,
768
],
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ConvNeXt_small"
],
use_ssld
=
use_ssld
)
return
model
def
ConvNeXt_base_224
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
ConvNeXt
(
depths
=
[
3
,
3
,
27
,
3
],
dims
=
[
128
,
256
,
512
,
1024
],
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ConvNeXt_base_224"
],
use_ssld
=
use_ssld
)
return
model
def
ConvNeXt_base_384
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
ConvNeXt
(
depths
=
[
3
,
3
,
27
,
3
],
dims
=
[
128
,
256
,
512
,
1024
],
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ConvNeXt_base_384"
],
use_ssld
=
use_ssld
)
return
model
def
ConvNeXt_large_224
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
ConvNeXt
(
depths
=
[
3
,
3
,
27
,
3
],
dims
=
[
192
,
384
,
768
,
1536
],
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ConvNeXt_large_224"
],
use_ssld
=
use_ssld
)
return
model
def
ConvNeXt_large_384
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
ConvNeXt
(
depths
=
[
3
,
3
,
27
,
3
],
dims
=
[
192
,
384
,
768
,
1536
],
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ConvNeXt_large_384"
],
use_ssld
=
use_ssld
)
return
model
\ No newline at end of file
ppcls/arch/backbone/model_zoo/regnet.py
浏览文件 @
fdaf24ee
...
...
@@ -34,8 +34,26 @@ from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_fro
MODEL_URLS
=
{
"RegNetX_200MF"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_200MF_pretrained.pdparams"
,
"RegNetX_400MF"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_400MF_pretrained.pdparams"
,
"RegNetX_600MF"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_600MF_pretrained.pdparams"
,
"RegNetX_800MF"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_800MF_pretrained.pdparams"
,
"RegNetX_1600MF"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_1600MF_pretrained.pdparams"
,
"RegNetX_3200MF"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_3200MF_pretrained.pdparams"
,
"RegNetX_4GF"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams"
,
"RegNetX_6400MF"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_6400MF_pretrained.pdparams"
,
"RegNetX_8GF"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_8GF_pretrained.pdparams"
,
"RegNetX_12GF"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_12GF_pretrained.pdparams"
,
"RegNetX_16GF"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_16GF_pretrained.pdparams"
,
"RegNetX_32GF"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_32GF_pretrained.pdparams"
,
"RegNetY_200MF"
:
...
...
@@ -43,7 +61,7 @@ MODEL_URLS = {
"RegNetY_4GF"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_4GF_pretrained.pdparams"
,
"RegNetY_32GF"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_32GF_pretrained.pdparams"
,
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetY_32GF_pretrained.pdparams"
}
__all__
=
list
(
MODEL_URLS
.
keys
())
...
...
@@ -106,7 +124,7 @@ class ConvBNLayer(nn.Layer):
padding
=
padding
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
".conv2d.output.1.w_0"
),
bias_attr
=
ParamAttr
(
name
=
name
+
".conv2d.output.1.b_0"
)
)
bias_attr
=
False
)
bn_name
=
name
+
"_bn"
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
...
...
@@ -354,6 +372,81 @@ def RegNetX_200MF(pretrained=False, use_ssld=False, **kwargs):
return
model
def
RegNetX_400MF
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
RegNet
(
w_a
=
24.48
,
w_0
=
24
,
w_m
=
2.54
,
d
=
22
,
group_w
=
16
,
bot_mul
=
1.0
,
q
=
8
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"RegNetX_400MF"
],
use_ssld
=
use_ssld
)
return
model
def
RegNetX_600MF
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
RegNet
(
w_a
=
36.97
,
w_0
=
48
,
w_m
=
2.24
,
d
=
16
,
group_w
=
24
,
bot_mul
=
1.0
,
q
=
8
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"RegNetX_600MF"
],
use_ssld
=
use_ssld
)
return
model
def
RegNetX_800MF
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
RegNet
(
w_a
=
35.73
,
w_0
=
56
,
w_m
=
2.28
,
d
=
16
,
group_w
=
16
,
bot_mul
=
1.0
,
q
=
8
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"RegNetX_800MF"
],
use_ssld
=
use_ssld
)
return
model
def
RegNetX_1600MF
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
RegNet
(
w_a
=
34.01
,
w_0
=
80
,
w_m
=
2.25
,
d
=
18
,
group_w
=
24
,
bot_mul
=
1.0
,
q
=
8
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"RegNetX_1600MF"
],
use_ssld
=
use_ssld
)
return
model
def
RegNetX_3200MF
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
RegNet
(
w_a
=
26.31
,
w_0
=
88
,
w_m
=
2.25
,
d
=
25
,
group_w
=
48
,
bot_mul
=
1.0
,
q
=
8
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"RegNetX_3200MF"
],
use_ssld
=
use_ssld
)
return
model
def
RegNetX_4GF
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
RegNet
(
w_a
=
38.65
,
...
...
@@ -369,63 +462,75 @@ def RegNetX_4GF(pretrained=False, use_ssld=False, **kwargs):
return
model
def
RegNetX_
32G
F
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
def
RegNetX_
6400M
F
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
RegNet
(
w_a
=
69.86
,
w_0
=
320
,
w_m
=
2.0
,
w_a
=
60.83
,
w_0
=
184
,
w_m
=
2.07
,
d
=
17
,
group_w
=
56
,
bot_mul
=
1.0
,
q
=
8
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"RegNetX_6400MF"
],
use_ssld
=
use_ssld
)
return
model
def
RegNetX_8GF
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
RegNet
(
w_a
=
49.56
,
w_0
=
80
,
w_m
=
2.88
,
d
=
23
,
group_w
=
1
68
,
group_w
=
1
20
,
bot_mul
=
1.0
,
q
=
8
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"RegNetX_
32
GF"
],
use_ssld
=
use_ssld
)
pretrained
,
model
,
MODEL_URLS
[
"RegNetX_
8
GF"
],
use_ssld
=
use_ssld
)
return
model
def
RegNet
Y_200M
F
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
def
RegNet
X_12G
F
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
RegNet
(
w_a
=
36.44
,
w_0
=
24
,
w_m
=
2.
49
,
d
=
1
3
,
group_w
=
8
,
w_a
=
73.36
,
w_0
=
168
,
w_m
=
2.
37
,
d
=
1
9
,
group_w
=
112
,
bot_mul
=
1.0
,
q
=
8
,
se_on
=
True
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"RegNetX_
3
2GF"
],
use_ssld
=
use_ssld
)
pretrained
,
model
,
MODEL_URLS
[
"RegNetX_
1
2GF"
],
use_ssld
=
use_ssld
)
return
model
def
RegNet
Y_4
GF
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
def
RegNet
X_16
GF
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
RegNet
(
w_a
=
31.41
,
w_0
=
9
6
,
w_m
=
2.
24
,
w_a
=
55.59
,
w_0
=
21
6
,
w_m
=
2.
1
,
d
=
22
,
group_w
=
64
,
group_w
=
128
,
bot_mul
=
1.0
,
q
=
8
,
se_on
=
True
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"RegNetX_
32
GF"
],
use_ssld
=
use_ssld
)
pretrained
,
model
,
MODEL_URLS
[
"RegNetX_
16
GF"
],
use_ssld
=
use_ssld
)
return
model
def
RegNet
Y
_32GF
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
def
RegNet
X
_32GF
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
RegNet
(
w_a
=
115.89
,
w_0
=
232
,
w_m
=
2.
53
,
d
=
2
0
,
group_w
=
232
,
w_a
=
69.86
,
w_0
=
320
,
w_m
=
2.
0
,
d
=
2
3
,
group_w
=
168
,
bot_mul
=
1.0
,
q
=
8
,
se_on
=
True
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"RegNetX_32GF"
],
use_ssld
=
use_ssld
)
...
...
ppcls/arch/backbone/model_zoo/repvgg.py
浏览文件 @
fdaf24ee
...
...
@@ -17,6 +17,7 @@
import
paddle.nn
as
nn
import
paddle
import
paddle.nn.functional
as
F
import
numpy
as
np
from
....utils.save_load
import
load_dygraph_pretrain
,
load_dygraph_pretrain_from_url
...
...
@@ -40,8 +41,12 @@ MODEL_URLS = {
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams"
,
"RepVGG_B2g4"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams"
,
"RepVGG_B3"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3_pretrained.pdparams"
,
"RepVGG_B3g4"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams"
,
"RepVGG_D2se"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_D2se_pretrained.pdparams"
}
__all__
=
list
(
MODEL_URLS
.
keys
())
...
...
@@ -76,6 +81,33 @@ class ConvBN(nn.Layer):
return
y
class
SEBlock
(
nn
.
Layer
):
def
__init__
(
self
,
input_channels
,
internal_neurons
):
super
(
SEBlock
,
self
).
__init__
()
self
.
down
=
nn
.
Conv2D
(
in_channels
=
input_channels
,
out_channels
=
internal_neurons
,
kernel_size
=
1
,
stride
=
1
,
bias_attr
=
True
)
self
.
up
=
nn
.
Conv2D
(
in_channels
=
internal_neurons
,
out_channels
=
input_channels
,
kernel_size
=
1
,
stride
=
1
,
bias_attr
=
True
)
self
.
input_channels
=
input_channels
def
forward
(
self
,
inputs
):
x
=
F
.
avg_pool2d
(
inputs
,
kernel_size
=
inputs
.
shape
[
3
])
x
=
self
.
down
(
x
)
x
=
F
.
relu
(
x
)
x
=
self
.
up
(
x
)
x
=
F
.
sigmoid
(
x
)
x
=
x
.
reshape
([
-
1
,
self
.
input_channels
,
1
,
1
])
return
inputs
*
x
class
RepVGGBlock
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
...
...
@@ -85,7 +117,8 @@ class RepVGGBlock(nn.Layer):
padding
=
0
,
dilation
=
1
,
groups
=
1
,
padding_mode
=
'zeros'
):
padding_mode
=
'zeros'
,
use_se
=
False
):
super
(
RepVGGBlock
,
self
).
__init__
()
self
.
is_repped
=
False
...
...
@@ -105,6 +138,11 @@ class RepVGGBlock(nn.Layer):
self
.
nonlinearity
=
nn
.
ReLU
()
if
use_se
:
self
.
se
=
SEBlock
(
out_channels
,
internal_neurons
=
out_channels
//
16
)
else
:
self
.
se
=
nn
.
Identity
()
self
.
rbr_identity
=
nn
.
BatchNorm2D
(
num_features
=
in_channels
)
if
out_channels
==
in_channels
and
stride
==
1
else
None
...
...
@@ -132,7 +170,7 @@ class RepVGGBlock(nn.Layer):
else
:
id_out
=
self
.
rbr_identity
(
inputs
)
return
self
.
nonlinearity
(
self
.
rbr_dense
(
inputs
)
+
self
.
rbr_1x1
(
inputs
)
+
id_out
)
self
.
se
(
self
.
rbr_dense
(
inputs
)
+
self
.
rbr_1x1
(
inputs
)
+
id_out
)
)
def
rep
(
self
):
if
not
hasattr
(
self
,
'rbr_reparam'
):
...
...
@@ -198,14 +236,12 @@ class RepVGG(nn.Layer):
num_blocks
,
width_multiplier
=
None
,
override_groups_map
=
None
,
class_num
=
1000
):
class_num
=
1000
,
use_se
=
False
):
super
(
RepVGG
,
self
).
__init__
()
assert
len
(
width_multiplier
)
==
4
self
.
override_groups_map
=
override_groups_map
or
dict
()
assert
0
not
in
self
.
override_groups_map
self
.
in_planes
=
min
(
64
,
int
(
64
*
width_multiplier
[
0
]))
self
.
stage0
=
RepVGGBlock
(
...
...
@@ -213,20 +249,33 @@ class RepVGG(nn.Layer):
out_channels
=
self
.
in_planes
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
padding
=
1
,
use_se
=
use_se
)
self
.
cur_layer_idx
=
1
self
.
stage1
=
self
.
_make_stage
(
int
(
64
*
width_multiplier
[
0
]),
num_blocks
[
0
],
stride
=
2
)
int
(
64
*
width_multiplier
[
0
]),
num_blocks
[
0
],
stride
=
2
,
use_se
=
use_se
)
self
.
stage2
=
self
.
_make_stage
(
int
(
128
*
width_multiplier
[
1
]),
num_blocks
[
1
],
stride
=
2
)
int
(
128
*
width_multiplier
[
1
]),
num_blocks
[
1
],
stride
=
2
,
use_se
=
use_se
)
self
.
stage3
=
self
.
_make_stage
(
int
(
256
*
width_multiplier
[
2
]),
num_blocks
[
2
],
stride
=
2
)
int
(
256
*
width_multiplier
[
2
]),
num_blocks
[
2
],
stride
=
2
,
use_se
=
use_se
)
self
.
stage4
=
self
.
_make_stage
(
int
(
512
*
width_multiplier
[
3
]),
num_blocks
[
3
],
stride
=
2
)
int
(
512
*
width_multiplier
[
3
]),
num_blocks
[
3
],
stride
=
2
,
use_se
=
use_se
)
self
.
gap
=
nn
.
AdaptiveAvgPool2D
(
output_size
=
1
)
self
.
linear
=
nn
.
Linear
(
int
(
512
*
width_multiplier
[
3
]),
class_num
)
def
_make_stage
(
self
,
planes
,
num_blocks
,
stride
):
def
_make_stage
(
self
,
planes
,
num_blocks
,
stride
,
use_se
=
False
):
strides
=
[
stride
]
+
[
1
]
*
(
num_blocks
-
1
)
blocks
=
[]
for
stride
in
strides
:
...
...
@@ -238,7 +287,8 @@ class RepVGG(nn.Layer):
kernel_size
=
3
,
stride
=
stride
,
padding
=
1
,
groups
=
cur_groups
))
groups
=
cur_groups
,
use_se
=
use_se
))
self
.
in_planes
=
planes
self
.
cur_layer_idx
+=
1
return
nn
.
Sequential
(
*
blocks
)
...
...
@@ -367,6 +417,17 @@ def RepVGG_B2g4(pretrained=False, use_ssld=False, **kwargs):
return
model
def
RepVGG_B3
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
RepVGG
(
num_blocks
=
[
4
,
6
,
16
,
1
],
width_multiplier
=
[
3
,
3
,
3
,
5
],
override_groups_map
=
None
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"RepVGG_B3"
],
use_ssld
=
use_ssld
)
return
model
def
RepVGG_B3g4
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
RepVGG
(
num_blocks
=
[
4
,
6
,
16
,
1
],
...
...
@@ -376,3 +437,15 @@ def RepVGG_B3g4(pretrained=False, use_ssld=False, **kwargs):
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"RepVGG_B3g4"
],
use_ssld
=
use_ssld
)
return
model
def
RepVGG_D2se
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
RepVGG
(
num_blocks
=
[
8
,
14
,
24
,
1
],
width_multiplier
=
[
2.5
,
2.5
,
2.5
,
5
],
override_groups_map
=
None
,
use_se
=
True
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"RepVGG_D2se"
],
use_ssld
=
use_ssld
)
return
model
ppcls/arch/backbone/model_zoo/resnest.py
浏览文件 @
fdaf24ee
...
...
@@ -39,6 +39,10 @@ MODEL_URLS = {
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams"
,
"ResNeSt101"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt101_pretrained.pdparams"
,
"ResNeSt200"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt200_pretrained.pdparams"
,
"ResNeSt269"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt269_pretrained.pdparams"
}
__all__
=
list
(
MODEL_URLS
.
keys
())
...
...
@@ -160,8 +164,7 @@ class SplatConv(nn.Layer):
padding
=
0
,
groups
=
groups
,
weight_attr
=
ParamAttr
(
name
=
name
+
"_weights"
,
initializer
=
KaimingNormal
()),
bias_attr
=
False
)
name
=
name
+
"_weights"
,
initializer
=
KaimingNormal
()))
self
.
rsoftmax
=
rSoftmax
(
radix
=
radix
,
cardinality
=
groups
)
...
...
@@ -739,3 +742,39 @@ def ResNeSt101(pretrained=False, use_ssld=False, **kwargs):
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ResNeSt101"
],
use_ssld
=
use_ssld
)
return
model
def
ResNeSt200
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
ResNeSt
(
layers
=
[
3
,
24
,
36
,
3
],
radix
=
2
,
groups
=
1
,
bottleneck_width
=
64
,
deep_stem
=
True
,
stem_width
=
64
,
avg_down
=
True
,
avd
=
True
,
avd_first
=
False
,
final_drop
=
0.0
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ResNeSt200"
],
use_ssld
=
use_ssld
)
return
model
def
ResNeSt269
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
ResNeSt
(
layers
=
[
3
,
30
,
48
,
8
],
radix
=
2
,
groups
=
1
,
bottleneck_width
=
64
,
deep_stem
=
True
,
stem_width
=
64
,
avg_down
=
True
,
avd
=
True
,
avd_first
=
False
,
final_drop
=
0.0
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"ResNeSt269"
],
use_ssld
=
use_ssld
)
return
model
ppcls/arch/backbone/model_zoo/tnt.py
浏览文件 @
fdaf24ee
...
...
@@ -20,7 +20,6 @@ import numpy as np
import
paddle
import
paddle.nn
as
nn
from
paddle.nn.initializer
import
TruncatedNormal
,
Constant
from
..base.theseus_layer
import
Identity
...
...
@@ -28,7 +27,9 @@ from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_fro
MODEL_URLS
=
{
"TNT_small"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams"
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams"
,
"TNT_base"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_base_pretrained.pdparams"
}
__all__
=
MODEL_URLS
.
keys
()
...
...
@@ -38,6 +39,14 @@ zeros_ = Constant(value=0.)
ones_
=
Constant
(
value
=
1.
)
class
Identity
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
Identity
,
self
).
__init__
()
def
forward
(
self
,
inputs
):
return
inputs
def
drop_path
(
x
,
drop_prob
=
0.
,
training
=
False
):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
...
...
@@ -165,8 +174,10 @@ class Block(nn.Layer):
act_layer
=
act_layer
,
drop
=
drop
)
self
.
norm1_proj
=
norm_layer
(
in_dim
)
self
.
proj
=
nn
.
Linear
(
in_dim
*
num_pixel
,
dim
)
self
.
norm1_proj
=
norm_layer
(
in_dim
*
num_pixel
)
self
.
proj
=
nn
.
Linear
(
in_dim
*
num_pixel
,
dim
,
bias_attr
=
False
)
self
.
norm2_proj
=
norm_layer
(
in_dim
*
num_pixel
)
# Outer transformer
self
.
norm_out
=
norm_layer
(
dim
)
self
.
attn_out
=
Attention
(
...
...
@@ -196,11 +207,10 @@ class Block(nn.Layer):
self
.
drop_path
(
self
.
mlp_in
(
self
.
norm_mlp_in
(
pixel_embed
))))
# outer
B
,
N
,
C
=
patch_embed
.
shape
norm1_proj
=
self
.
norm1_proj
(
pixel_embed
)
norm1_proj
=
norm1_proj
.
reshape
(
(
B
,
N
-
1
,
norm1_proj
.
shape
[
1
]
*
norm1_proj
.
shape
[
2
]))
patch_embed
[:,
1
:]
=
paddle
.
add
(
patch_embed
[:,
1
:],
self
.
proj
(
norm1_proj
))
norm1_proj
=
pixel_embed
.
reshape
(
shape
=
[
B
,
N
-
1
,
C
])
norm1_proj
=
self
.
norm1_proj
(
norm1_proj
)
patch_embed
[:,
1
:]
=
paddle
.
add
(
patch_embed
[:,
1
:],
self
.
norm2_proj
(
self
.
proj
(
norm1_proj
)))
patch_embed
=
paddle
.
add
(
patch_embed
,
self
.
drop_path
(
self
.
attn_out
(
self
.
norm_out
(
patch_embed
))))
...
...
@@ -217,6 +227,7 @@ class PixelEmbed(nn.Layer):
in_dim
=
48
,
stride
=
4
):
super
().
__init__
()
self
.
patch_size
=
patch_size
num_patches
=
(
img_size
//
patch_size
)
**
2
self
.
img_size
=
img_size
self
.
num_patches
=
num_patches
...
...
@@ -230,14 +241,12 @@ class PixelEmbed(nn.Layer):
def
forward
(
self
,
x
,
pixel_pos
):
B
,
C
,
H
,
W
=
x
.
shape
assert
H
==
self
.
img_size
and
W
==
self
.
img_size
,
f
"Input image size (
{
H
}
*
{
W
}
) doesn't match model (
{
self
.
img_size
}
*
{
self
.
img_size
}
)."
x
=
self
.
proj
(
x
)
x
=
nn
.
functional
.
unfold
(
x
,
self
.
new_patch_size
,
self
.
new_patch_size
)
x
=
nn
.
functional
.
unfold
(
x
,
self
.
patch_size
,
self
.
patch_size
)
x
=
x
.
transpose
((
0
,
2
,
1
)).
reshape
(
(
-
1
,
self
.
in_dim
,
self
.
new_patch_size
,
self
.
new_patch_size
))
(
-
1
,
C
,
self
.
patch_size
,
self
.
patch_size
))
x
=
self
.
proj
(
x
)
x
=
x
.
reshape
((
-
1
,
self
.
in_dim
,
self
.
patch_size
)).
transpose
((
0
,
2
,
1
))
x
=
x
+
pixel_pos
x
=
x
.
reshape
((
-
1
,
self
.
in_dim
,
self
.
new_patch_size
*
self
.
new_patch_size
)).
transpose
((
0
,
2
,
1
))
return
x
...
...
@@ -288,8 +297,7 @@ class TNT(nn.Layer):
self
.
add_parameter
(
"patch_pos"
,
self
.
patch_pos
)
self
.
pixel_pos
=
self
.
create_parameter
(
shape
=
(
1
,
in_dim
,
new_patch_size
,
new_patch_size
),
default_initializer
=
zeros_
)
shape
=
(
1
,
patch_size
,
in_dim
),
default_initializer
=
zeros_
)
self
.
add_parameter
(
"pixel_pos"
,
self
.
pixel_pos
)
self
.
pos_drop
=
nn
.
Dropout
(
p
=
drop_rate
)
...
...
@@ -345,7 +353,6 @@ class TNT(nn.Layer):
(
self
.
cls_token
.
expand
((
B
,
-
1
,
-
1
)),
patch_embed
),
axis
=
1
)
patch_embed
=
patch_embed
+
self
.
patch_pos
patch_embed
=
self
.
pos_drop
(
patch_embed
)
for
blk
in
self
.
blocks
:
pixel_embed
,
patch_embed
=
blk
(
pixel_embed
,
patch_embed
)
...
...
@@ -385,3 +392,17 @@ def TNT_small(pretrained=False, use_ssld=False, **kwargs):
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"TNT_small"
],
use_ssld
=
use_ssld
)
return
model
def
TNT_base
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
TNT
(
patch_size
=
16
,
embed_dim
=
640
,
in_dim
=
40
,
depth
=
12
,
num_heads
=
10
,
in_num_head
=
4
,
qkv_bias
=
False
,
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"TNT_base"
],
use_ssld
=
use_ssld
)
return
model
ppcls/arch/backbone/model_zoo/van.py
浏览文件 @
fdaf24ee
...
...
@@ -26,6 +26,12 @@ from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_fro
MODEL_URLS
=
{
"VAN_B0"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B0_pretrained.pdparams"
,
"VAN_B1"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B1_pretrained.pdparams"
,
"VAN_B2"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B2_pretrained.pdparams"
,
"VAN_B3"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VAN_B3_pretrained.pdparams"
}
__all__
=
list
(
MODEL_URLS
.
keys
())
...
...
@@ -269,6 +275,7 @@ class VAN(nn.Layer):
x
,
H
,
W
=
patch_embed
(
x
)
for
blk
in
block
:
x
=
blk
(
x
)
x
=
x
.
flatten
(
2
)
x
=
swapdim
(
x
,
1
,
2
)
x
=
norm
(
x
)
...
...
@@ -317,3 +324,39 @@ def VAN_B0(pretrained=False, use_ssld=False, **kwargs):
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"VAN_B0"
],
use_ssld
=
use_ssld
)
return
model
def
VAN_B1
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
VAN
(
embed_dims
=
[
64
,
128
,
320
,
512
],
mlp_ratios
=
[
8
,
8
,
4
,
4
],
norm_layer
=
partial
(
nn
.
LayerNorm
,
epsilon
=
1e-6
),
depths
=
[
2
,
2
,
4
,
2
],
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"VAN_B1"
],
use_ssld
=
use_ssld
)
return
model
def
VAN_B2
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
VAN
(
embed_dims
=
[
64
,
128
,
320
,
512
],
mlp_ratios
=
[
8
,
8
,
4
,
4
],
norm_layer
=
partial
(
nn
.
LayerNorm
,
epsilon
=
1e-6
),
depths
=
[
3
,
3
,
12
,
3
],
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"VAN_B2"
],
use_ssld
=
use_ssld
)
return
model
def
VAN_B3
(
pretrained
=
False
,
use_ssld
=
False
,
**
kwargs
):
model
=
VAN
(
embed_dims
=
[
64
,
128
,
320
,
512
],
mlp_ratios
=
[
8
,
8
,
4
,
4
],
norm_layer
=
partial
(
nn
.
LayerNorm
,
epsilon
=
1e-6
),
depths
=
[
3
,
5
,
27
,
3
],
**
kwargs
)
_load_pretrained
(
pretrained
,
model
,
MODEL_URLS
[
"VAN_B3"
],
use_ssld
=
use_ssld
)
return
model
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录