paddleclas.py 19.7 KB
Newer Older
T
Tingquan Gao 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
C
chenziheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
__dir__ = os.path.dirname(__file__)
T
Tingquan Gao 已提交
18 19 20
sys.path.append(os.path.join(__dir__, ""))
sys.path.append(os.path.join(__dir__, "deploy"))

T
Tingquan Gao 已提交
21 22
import argparse
import shutil
T
Tingquan Gao 已提交
23
import textwrap
T
Tingquan Gao 已提交
24 25 26 27
import tarfile
import requests
import warnings
from functools import partial
T
Tingquan Gao 已提交
28
from difflib import SequenceMatcher
C
chenziheng 已提交
29 30 31 32

import cv2
import numpy as np
from tqdm import tqdm
T
Tingquan Gao 已提交
33 34 35 36 37 38 39 40 41
from prettytable import PrettyTable

from deploy.python.predict_cls import ClsPredictor
from deploy.utils.get_image_list import get_image_list
from deploy.utils import config

from ppcls.arch.backbone import *

__all__ = ["PaddleClas"]
T
Tingquan Gao 已提交
42

C
chenziheng 已提交
43
BASE_DIR = os.path.expanduser("~/.paddleclas/")
T
Tingquan Gao 已提交
44 45 46 47
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model")
BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images")
BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar"
MODEL_SERIES = {
T
Tingquan Gao 已提交
48 49 50
    "AlexNet": ["AlexNet"],
    "DarkNet": ["DarkNet53"],
    "DeiT": [
T
Tingquan Gao 已提交
51 52 53 54
        "DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384",
        "DeiT_base_patch16_224", "DeiT_base_patch16_384",
        "DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224",
        "DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224"
T
Tingquan Gao 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    ],
    "DenseNet": [
        "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
        "DenseNet264"
    ],
    "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
    "EfficientNet": [
        "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
        "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
        "EfficientNetB6", "EfficientNetB7"
    ],
    "GhostNet":
    ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
    "HRNet": [
        "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
        "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
        "HRNet_W48_C_ssld"
    ],
    "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
    "MobileNetV1": [
        "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
        "MobileNetV1", "MobileNetV1_ssld"
    ],
    "MobileNetV2": [
        "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
        "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
        "MobileNetV2_ssld"
    ],
    "MobileNetV3": [
        "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
        "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
        "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
        "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
        "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
        "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
    ],
    "RegNet": ["RegNetX_4GF"],
    "Res2Net": [
        "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
        "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
        "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
        "Res2Net200_vd_26w_4s_ssld"
    ],
    "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
    "ResNet": [
        "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
        "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
        "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
        "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
        "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
    ],
    "ResNeXt": [
        "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
        "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
        "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
        "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
        "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
        "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
        "ResNeXt152_vd_64x4d"
    ],
    "SENet": [
        "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
        "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
        "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
    ],
    "ShuffleNetV2": [
        "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
        "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
        "ShuffleNetV2_x2_0"
    ],
    "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
    "SwinTransformer": [
        "SwinTransformer_large_patch4_window7_224_22kto1k",
        "SwinTransformer_large_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window7_224_22kto1k",
        "SwinTransformer_base_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window12_384",
        "SwinTransformer_base_patch4_window7_224",
        "SwinTransformer_small_patch4_window7_224",
        "SwinTransformer_tiny_patch4_window7_224"
    ],
    "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
    "VisionTransformer": [
        "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
        "ViT_large_patch16_224", "ViT_large_patch16_384",
        "ViT_large_patch32_384", "ViT_small_patch16_224"
    ],
    "Xception": [
        "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
        "Xception71"
    ]
C
chenziheng 已提交
146 147 148
}


T
Tingquan Gao 已提交
149 150
class ImageTypeError(Exception):
    """ImageTypeError.
T
Tingquan Gao 已提交
151 152
    """

T
Tingquan Gao 已提交
153
    def __init__(self, message=""):
T
Tingquan Gao 已提交
154 155 156
        super().__init__(message)


T
Tingquan Gao 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
class InputModelError(Exception):
    """InputModelError.
    """

    def __init__(self, message=""):
        super().__init__(message)


def args_cfg():
    parser = config.parser()
    other_options = [
        ("infer_imgs", str, None, "The image(s) to be predicted."),
        ("model_name", str, None, "The model name to be used."),
        ("inference_model_dir", str, None, "The directory of model files."),
        ("use_gpu", bool, True, "Whether use GPU. Default by True."), (
            "enable_mkldnn", bool, False,
            "Whether use MKLDNN. Default by False."),
        ("batch_size", int, 1, "Batch size. Default by 1.")
    ]
    for name, opt_type, default, description in other_options:
        parser.add_argument(
            "--" + name, type=opt_type, default=default, help=description)

    args = parser.parse_args()

    for name, opt_type, default, description in other_options:
        val = eval("args." + name)
        full_name = "Global." + name
        args.override.append(
            f"{full_name}={val}") if val is not default else None

    cfg = config.get_config(
        args.config, overrides=args.override, show=args.verbose)

    return cfg


def get_default_confg():
    return {
        "Global": {
            "model_name": "MobileNetV3_small_x0_35",
            "use_gpu": False,
            "use_fp16": False,
            "enable_mkldnn": False,
            "cpu_num_threads": 1,
            "use_tensorrt": False,
            "ir_optim": False,
            "enable_profile": False
        },
        "PreProcess": {
            "transform_ops": [{
                "ResizeImage": {
                    "resize_short": 256
                }
            }, {
                "CropImage": {
                    "size": 224
                }
            }, {
                "NormalizeImage": {
                    "scale": 0.00392157,
                    "mean": [0.485, 0.456, 0.406],
                    "std": [0.229, 0.224, 0.225],
                    "order": ""
                }
            }, {
                "ToCHWImage": None
            }]
        },
        "PostProcess": {
            "name": "Topk",
            "topk": 5,
            "class_id_map_file": "./ppcls/utils/imagenet1k_label_list.txt"
        }
    }


T
Tingquan Gao 已提交
234
def print_info():
T
Tingquan Gao 已提交
235 236 237
    """Print list of supported models in formatted.
    """
    table = PrettyTable(["Series", "Name"])
T
Tingquan Gao 已提交
238 239 240 241 242
    try:
        sz = os.get_terminal_size()
        width = sz.columns - 30 if sz.columns > 50 else 10
    except OSError:
        width = 100
T
Tingquan Gao 已提交
243 244
    for series in MODEL_SERIES:
        names = textwrap.fill("  ".join(MODEL_SERIES[series]), width=width)
T
Tingquan Gao 已提交
245
        table.add_row([series, names])
T
Tingquan Gao 已提交
246 247 248
    width = len(str(table).split("\n")[0])
    print("{}".format("-" * width))
    print("Models supported by PaddleClas".center(width))
T
Tingquan Gao 已提交
249
    print(table)
T
Tingquan Gao 已提交
250 251
    print("Powered by PaddlePaddle!".rjust(width))
    print("{}".format("-" * width))
T
Tingquan Gao 已提交
252 253 254


def get_model_names():
T
Tingquan Gao 已提交
255 256
    """Get the model names list.
    """
T
Tingquan Gao 已提交
257
    model_names = []
T
Tingquan Gao 已提交
258 259
    for series in MODEL_SERIES:
        model_names += (MODEL_SERIES[series])
T
Tingquan Gao 已提交
260 261 262
    return model_names


T
Tingquan Gao 已提交
263 264
def similar_architectures(name="", names=[], thresh=0.1, topk=10):
    """Find the most similar topk model names.
T
Tingquan Gao 已提交
265 266 267
    """
    scores = []
    for idx, n in enumerate(names):
T
Tingquan Gao 已提交
268
        if n.startswith("__"):
T
Tingquan Gao 已提交
269 270 271 272 273 274 275 276 277
            continue
        score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
        if score > thresh:
            scores.append((idx, score))
    scores.sort(key=lambda x: x[1], reverse=True)
    similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
    return similar_names


C
chenziheng 已提交
278
def download_with_progressbar(url, save_path):
T
Tingquan Gao 已提交
279 280 281 282
    """Download from url with progressbar.
    """
    if os.path.isfile(save_path):
        os.remove(save_path)
C
chenziheng 已提交
283
    response = requests.get(url, stream=True)
T
Tingquan Gao 已提交
284
    total_size_in_bytes = int(response.headers.get("content-length", 0))
C
chenziheng 已提交
285
    block_size = 1024  # 1 Kibibyte
T
Tingquan Gao 已提交
286 287
    progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
    with open(save_path, "wb") as file:
C
chenziheng 已提交
288 289 290 291
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
T
Tingquan Gao 已提交
292 293
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
            save_path):
T
Tingquan Gao 已提交
294
        raise Exception(
T
Tingquan Gao 已提交
295
            f"Something went wrong while downloading model/image from {url}")
C
chenziheng 已提交
296 297


T
Tingquan Gao 已提交
298 299 300 301 302 303 304
def check_model_file(model_name):
    """Check the model files exist and download and untar when no exist. 
    """
    storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                model_name)
    url = BASE_DOWNLOAD_URL.format(model_name)

C
chenziheng 已提交
305
    tar_file_name_list = [
T
Tingquan Gao 已提交
306
        "inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel"
C
chenziheng 已提交
307
    ]
T
Tingquan Gao 已提交
308 309 310 311 312 313 314
    model_file_path = storage_directory("inference.pdmodel")
    params_file_path = storage_directory("inference.pdiparams")
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        tmp_path = storage_directory(url.split("/")[-1])
        print(f"download {url} to {tmp_path}")
        os.makedirs(storage_directory(), exist_ok=True)
C
chenziheng 已提交
315
        download_with_progressbar(url, tmp_path)
T
Tingquan Gao 已提交
316
        with tarfile.open(tmp_path, "r") as tarObj:
C
chenziheng 已提交
317 318 319 320 321 322 323 324
            for member in tarObj.getmembers():
                filename = None
                for tar_file_name in tar_file_name_list:
                    if tar_file_name in member.name:
                        filename = tar_file_name
                if filename is None:
                    continue
                file = tarObj.extractfile(member)
T
Tingquan Gao 已提交
325
                with open(storage_directory(filename), "wb") as f:
C
chenziheng 已提交
326 327
                    f.write(file.read())
        os.remove(tmp_path)
T
Tingquan Gao 已提交
328 329 330 331 332
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        raise Exception(
            f"Something went wrong while praparing the model[{model_name}] files!"
        )
C
chenziheng 已提交
333

T
Tingquan Gao 已提交
334
    return storage_directory()
C
chenziheng 已提交
335

T
Tingquan Gao 已提交
336 337 338 339 340 341 342 343

def save_prelabel_results(class_id, input_file_path, output_dir):
    """Save the predicted image according to the prediction.
    """
    output_dir = os.path.join(output_dir, str(class_id))
    if not os.path.isdir(output_dir):
        os.makedirs(output_dir)
    shutil.copy(input_file_path, output_dir)
C
chenziheng 已提交
344 345 346


class PaddleClas(object):
T
Tingquan Gao 已提交
347 348 349
    """PaddleClas.
    """

T
Tingquan Gao 已提交
350
    print_info()
C
chenziheng 已提交
351

T
Tingquan Gao 已提交
352 353 354 355 356 357 358
    def __init__(self,
                 config: dict=None,
                 model_name: str=None,
                 inference_model_dir: str=None,
                 use_gpu: bool=None,
                 batch_size: int=None):
        """Init PaddleClas with config.
T
Tingquan Gao 已提交
359

T
Tingquan Gao 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        Args:
            config: The config of PaddleClas's predictor, default by None. If default, the default configuration is used. Please refer doc for more information.
            model_name: The model name supported by PaddleClas, default by None. If specified, override config.
            inference_model_dir: The directory that contained model file and params file to be used, default by None. If specified, override config.
            use_gpu: Wheather use GPU, default by None. If specified, override config.
            batch_size: The batch size to pridict, default by None. If specified, override config.
        """
        super().__init__()
        self._config = config
        self._check_config(model_name, inference_model_dir, use_gpu,
                           batch_size)
        self._check_input_model()
        self.cls_predictor = ClsPredictor(self._config)

    def get_config(self):
        """Get the config.
C
chenziheng 已提交
376
        """
T
Tingquan Gao 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
        return self._config

    def _check_config(self,
                      model_name=None,
                      inference_model_dir=None,
                      use_gpu=None,
                      batch_size=None):
        if self._config is None:
            self._config = get_default_confg()
            warnings.warn("config is not provided, use default!")
        self._config = config.AttrDict(self._config)
        config.create_attr_dict(self._config)

        if model_name is not None:
            self._config.Global["model_name"] = model_name
        if inference_model_dir is not None:
            self._config.Global["inference_model_dir"] = inference_model_dir
        if use_gpu is not None:
            self._config.Global["use_gpu"] = use_gpu
        if batch_size is not None:
            self._config.Global["batch_size"] = batch_size

    def _check_input_model(self):
        """Check input model name or model files.
        """
        candidate_model_names = get_model_names()
        input_model_name = self._config.Global.get("model_name", None)
        inference_model_dir = self._config.Global.get("inference_model_dir",
                                                      None)
        if input_model_name is not None:
            similar_names = similar_architectures(input_model_name,
                                                  candidate_model_names)
            similar_names_str = ", ".join(similar_names)
            if input_model_name not in similar_names_str:
                err = f"{input_model_name} is not exist! Maybe you want: [{similar_names_str}]"
                raise InputModelError(err)
            if input_model_name not in candidate_model_names:
                err = f"{input_model_name} is not provided by PaddleClas. If you want to use your own model, please input model_file as model path!"
                raise InputModelError(err)
            self._config.Global.inference_model_dir = check_model_file(
                input_model_name)
            return
        elif inference_model_dir is not None:
            model_file_path = os.path.join(inference_model_dir,
                                           "inference.pdmodel")
            params_file_path = os.path.join(inference_model_dir,
                                            "inference.pdiparams")
            if not os.path.isfile(model_file_path) or not os.path.isfile(
                    params_file_path):
                err = f"There is no model file or params file in this directory: {inference_model_dir}"
                raise InputModelError(err)
            return
        else:
            err = f"Please specify the model name supported by PaddleClas or directory contained model file and params file."
            raise InputModelError(err)
        return

    def predict(self, input_data, print_pred=True):
        """Predict label of img with paddleclas.
C
chenziheng 已提交
436
        Args:
T
Tingquan Gao 已提交
437 438
            input_data(str, NumPy.ndarray): 
                image to be classified, support: str(local path of image file, internet URL, directory containing series of images) and NumPy.ndarray(preprocessed image data that has 3 channels and accords with [C, H, W], or raw image data that has 3 channels and accords with [H, W, C]).
C
chenziheng 已提交
439
        Returns:
T
Tingquan Gao 已提交
440
            dict: {image_name: "", class_id: [], scores: [], label_names: []},if label name path == None,label_names will be empty.
C
chenziheng 已提交
441
        """
T
Tingquan Gao 已提交
442
        if isinstance(input_data, np.ndarray):
T
Tingquan Gao 已提交
443
            return self.cls_predictor.predict(input_data)
T
Tingquan Gao 已提交
444
        elif isinstance(input_data, str):
T
Tingquan Gao 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
            if input_data.startswith("http"):
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
                input_data = image_save_path
                warnings.warn(
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
            image_list = get_image_list(input_data)

            batch_size = self._config.Global.get("batch_size", 1)
            pre_label_out_idr = self._config.Global.get("pre_label_out_idr",
                                                        False)

            img_list = []
T
Tingquan Gao 已提交
462
            img_path_list = []
T
Tingquan Gao 已提交
463
            output_list = []
T
Tingquan Gao 已提交
464 465 466 467
            cnt = 0
            for idx, img_path in enumerate(image_list):
                img = cv2.imread(img_path)
                if img is None:
T
Tingquan Gao 已提交
468 469 470
                    warnings.warn(
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
T
Tingquan Gao 已提交
471
                    continue
T
Tingquan Gao 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
                img_list.append(img)
                img_path_list.append(img_path)
                cnt += 1

                if cnt % batch_size == 0 or (idx + 1) == len(image_list):
                    outputs = self.cls_predictor.predict(img_list)
                    output_list.append(outputs[0])
                    preds = self.cls_predictor.postprocess(outputs)
                    for nu, pred in enumerate(preds):
                        if pre_label_out_idr:
                            save_prelabel_results(pred["class_ids"][0],
                                                  img_path_list[nu],
                                                  pre_label_out_idr)
                        if print_pred:
                            pred_str_list = [
                                f"filename: {img_path_list[nu]}",
                                f"top-{self._config.PostProcess.get('topk', 1)}"
                            ]
                            for k in pred:
                                pred_str_list.append(f"{k}: {pred[k]}")
                            print(", ".join(pred_str_list))
                    img_list = []
T
Tingquan Gao 已提交
494
                    img_path_list = []
T
Tingquan Gao 已提交
495
            return output_list
C
chenziheng 已提交
496
        else:
T
Tingquan Gao 已提交
497 498 499
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return
C
chenziheng 已提交
500 501


T
Tingquan Gao 已提交
502
# for CLI
C
chenziheng 已提交
503
def main():
T
Tingquan Gao 已提交
504 505 506 507 508 509
    """Function API used for commad line.
    """
    cfg = args_cfg()
    clas_engine = PaddleClas(cfg)
    clas_engine.predict(cfg["Global"]["infer_imgs"], print_pred=True)
    return
C
chenziheng 已提交
510 511


T
Tingquan Gao 已提交
512
if __name__ == "__main__":
C
chenziheng 已提交
513
    main()