resnet.py 9.2 KB
Newer Older
S
fix  
shippingwang 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
S
fix  
shippingwang 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
S
fix  
shippingwang 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14

15 16 17 18
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

S
fix  
shippingwang 已提交
19
import numpy as np
20
import paddle
W
WuHaobo 已提交
21
import paddle.fluid as fluid
22
from paddle.fluid.param_attr import ParamAttr
S
fix  
shippingwang 已提交
23 24 25 26
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout

import math
W
WuHaobo 已提交
27

S
fix  
shippingwang 已提交
28
__all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]
W
WuHaobo 已提交
29 30


S
fix  
shippingwang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(bn_name + "_offset"),
            moving_mean_name=bn_name + "_mean",
            moving_variance_name=bn_name + "_variance")

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act="relu",
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_branch2b")
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = fluid.layers.elementwise_add(x=short, y=conv2)

        layer_helper = LayerHelper(self.full_name(), act="relu")
        return layer_helper.append_activation(y)


class BasicBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 name=None):
        super(BasicBlock, self).__init__()
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=stride,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = fluid.layers.elementwise_add(x=short, y=conv1)
S
fix  
shippingwang 已提交
169

S
fix  
shippingwang 已提交
170 171 172 173 174 175 176 177 178
        layer_helper = LayerHelper(self.full_name(), act="relu")
        return layer_helper.append_activation(y)


class ResNet(fluid.dygraph.Layer):
    def __init__(self, layers=50, class_dim=1000):
        super(ResNet, self).__init__()

        self.layers = layers
179
        supported_layers = [18, 34, 50, 101, 152]
W
WuHaobo 已提交
180
        assert layers in supported_layers, \
S
fix  
shippingwang 已提交
181 182
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
W
WuHaobo 已提交
183

S
shippingwang 已提交
184 185
        if layers == 18:
            depth = [2, 2, 2, 2]
186
        elif layers == 34 or layers == 50:
W
WuHaobo 已提交
187 188 189 190 191
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
S
fix  
shippingwang 已提交
192 193
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
S
fix  
shippingwang 已提交
194
        num_filters = [64, 128, 256, 512]
W
WuHaobo 已提交
195

S
fix  
shippingwang 已提交
196 197
        self.conv = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
198 199 200
            num_filters=64,
            filter_size=7,
            stride=2,
S
fix  
shippingwang 已提交
201 202 203 204 205 206
            act="relu",
            name="conv1")
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type="max")

        self.block_list = []
207 208
        if layers >= 50:
            for block in range(len(depth)):
S
fix  
shippingwang 已提交
209
                shortcut = False
210 211 212 213 214 215 216 217
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
S
fix  
shippingwang 已提交
218 219 220 221 222 223 224 225 226 227 228
                    bottleneck_block = self.add_sublayer(
                        conv_name,
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
229 230
        else:
            for block in range(len(depth)):
S
fix  
shippingwang 已提交
231
                shortcut = False
232 233
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
S
fix  
shippingwang 已提交
234 235 236 237 238 239 240 241 242 243 244
                    basic_block = self.add_sublayer(
                        conv_name,
                        BasicBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            name=conv_name))
                    self.block_list.append(basic_block)
                    shortcut = True
W
WuHaobo 已提交
245

S
fix  
shippingwang 已提交
246 247
        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)
S
fix  
shippingwang 已提交
248

S
fix  
shippingwang 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            param_attr=ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv),
                name="fc_0.w_0"),
            bias_attr=ParamAttr(name="fc_0.b_0"))

    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y
W
WuHaobo 已提交
270

W
WuHaobo 已提交
271

S
fix  
shippingwang 已提交
272 273
def ResNet18(**args):
    model = ResNet(layers=18, **args)
W
WuHaobo 已提交
274 275 276
    return model


S
fix  
shippingwang 已提交
277 278
def ResNet34(**args):
    model = ResNet(layers=34, **args)
W
WuHaobo 已提交
279 280 281
    return model


S
fix  
shippingwang 已提交
282 283
def ResNet50(**args):
    model = ResNet(layers=50, **args)
W
WuHaobo 已提交
284 285 286
    return model


S
fix  
shippingwang 已提交
287 288
def ResNet101(**args):
    model = ResNet(layers=101, **args)
W
WuHaobo 已提交
289 290 291
    return model


S
fix  
shippingwang 已提交
292 293
def ResNet152(**args):
    model = ResNet(layers=152, **args)
W
WuHaobo 已提交
294
    return model