MoCo_clas.yaml 2.5 KB
Newer Older
L
leozhang0912 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
# global configs
Global:
  checkpoints: null
  output_dir: ./output/ 
  device: gpu
  save_interval: 20
  eval_during_train: True
  eval_interval: 1
  epochs: 100
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: ./inference
  # training model under @to_static
  to_static: False


Arch:
  name: MoCo_finetune
  pretrained_model: ./pretrain/moco_v2_bs_256_epoch_200
  backbone:
    name: ResNet50
    stop_layer_name: avg_pool
    freeze_befor: avg_pool
  head:
    name: ClasHead
    class_num: 1000


# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
  Eval:
    - CELoss:
        weight: 1.0


Optimizer:
  name: Momentum
  momentum: 0.9
  lr:
    name: MultiStepDecay
    learning_rate: 30.0
    milestones: [60, 80]


DataLoader:
  Train:
    dataset:
      name: MoCoImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/train_list.txt
      return_label: True
      return_two_sample: False
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandomResizedCrop:
            size: 224
        - RandomHorizontalFlip:
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 64
      shuffle: True
      drop_last: False
    loader:
      num_workers: 4
      use_shared_memory: True

  Eval:
    dataset:
      name: MoCoImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/val_list.txt
      return_label: True
      return_two_sample: False
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - Resize:
            size: 256
        - CenterCrop:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 64
      shuffle: True
      drop_last: True
    loader:
      num_workers: 4
      use_shared_memory: True

Metric:
  Train:
    - TopkAcc:
        topk: [1, 5]
  Eval:
    - TopkAcc:
        topk: [1, 5]