# global configs Global: checkpoints: null output_dir: ./output/ device: gpu save_interval: 20 eval_during_train: True eval_interval: 1 epochs: 100 print_batch_step: 10 use_visualdl: False # used for static mode and model export image_shape: [3, 224, 224] save_inference_dir: ./inference # training model under @to_static to_static: False Arch: name: MoCo_finetune pretrained_model: ./pretrain/moco_v2_bs_256_epoch_200 backbone: name: ResNet50 stop_layer_name: avg_pool freeze_befor: avg_pool head: name: ClasHead class_num: 1000 # loss function config for traing/eval process Loss: Train: - CELoss: weight: 1.0 Eval: - CELoss: weight: 1.0 Optimizer: name: Momentum momentum: 0.9 lr: name: MultiStepDecay learning_rate: 30.0 milestones: [60, 80] DataLoader: Train: dataset: name: MoCoImageNetDataset image_root: ./dataset/ILSVRC2012/ cls_label_path: ./dataset/ILSVRC2012/train_list.txt return_label: True return_two_sample: False transform_ops: - DecodeImage: to_rgb: True channel_first: False - RandomResizedCrop: size: 224 - RandomHorizontalFlip: - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 64 shuffle: True drop_last: False loader: num_workers: 4 use_shared_memory: True Eval: dataset: name: MoCoImageNetDataset image_root: ./dataset/ILSVRC2012/ cls_label_path: ./dataset/ILSVRC2012/val_list.txt return_label: True return_two_sample: False transform_ops: - DecodeImage: to_rgb: True channel_first: False - Resize: size: 256 - CenterCrop: size: 224 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 64 shuffle: True drop_last: True loader: num_workers: 4 use_shared_memory: True Metric: Train: - TopkAcc: topk: [1, 5] Eval: - TopkAcc: topk: [1, 5]