CvT_W24_384.yaml 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: ./output/
  device: gpu
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
  epochs: 300
  print_batch_step: 50
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 384, 384]
  save_inference_dir: ./inference
  # training model under @to_static
  to_static: False
  update_freq: 2  # for 8 cards

G
gaotingquan 已提交
20 21 22 23 24 25 26 27 28 29 30 31

# mixed precision
AMP:
  use_amp: False
  use_fp16_test: False
  scale_loss: 128.0
  use_dynamic_loss_scaling: True
  use_promote: False
  # O1: mixed fp16, O2: pure fp16
  level: O1


32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
# model architecture
Arch:
  name: CvT_W24_384
  class_num: 1000

# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
        epsilon: 0.1
  Eval:
    - CELoss:
        weight: 1.0

Optimizer:
  name: AdamW
  beta1: 0.9
  beta2: 0.999
  epsilon: 1e-8
  weight_decay: 0.1
  no_weight_decay_name: pos_embed cls_token .bias
  one_dim_param_no_weight_decay: True
  lr:
    # for 8 cards
    name: Cosine
    learning_rate: 1e-3  # lr 1e-3 for total_batch_size 1024
    eta_min: 1e-5
    warmup_epoch: 5
    warmup_start_lr: 1e-6
    by_epoch: True

# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/train_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
            backend: pil
        - RandCropImage:
            size: 384
            interpolation: bicubic
            backend: pil
        - RandFlipImage:
            flip_code: 1
        - TimmAutoAugment:
            config_str: rand-m9-mstd0.5-inc1
            interpolation: bicubic
            img_size: 384
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - RandomErasing:
            EPSILON: 0.25
            sl: 0.02
            sh: 1.0/3.0
            r1: 0.3
            attempt: 10
            use_log_aspect: True
            mode: pixel
      batch_transform_ops:
        - OpSampler:
            MixupOperator:
              alpha: 0.8
              prob: 0.5
            CutmixOperator:
              alpha: 1.0
              prob: 0.5
    sampler:
      name: DistributedBatchSampler
G
gaotingquan 已提交
109
      batch_size: 64
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
      drop_last: True
      shuffle: True
    loader:
      num_workers: 4
      use_shared_memory: True

  Eval:
    dataset: 
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/val_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
            backend: pil
        - ResizeImage:
            size: 384
            interpolation: bicubic
            backend: pil
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
G
gaotingquan 已提交
137
      batch_size: 64
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
      drop_last: False
      shuffle: False
    loader:
      num_workers: 4
      use_shared_memory: True

Infer:
  infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  batch_size: 10
  transforms:
    - DecodeImage:
        to_rgb: True
        channel_first: False
        backend: pil
    - ResizeImage:
        size: 384
        interpolation: bicubic
        backend: pil
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.485, 0.456, 0.406]
        std: [0.229, 0.224, 0.225]
        order: ''
    - ToCHWImage:
  PostProcess:
    name: Topk
    topk: 5
    class_id_map_file: ppcls/utils/imagenet1k_label_list.txt

Metric:
  Eval:
    - TopkAcc:
        topk: [1, 5]