提交 a2052232 编写于 作者: Y Yang Nie 提交者: Tingquan Gao

add support for `CvT_21_244`, `CvT_13_384`, `CvT_21_384` and `CvT_W24_384`

上级 7ed40fb9
...@@ -75,7 +75,7 @@ from .model_zoo.foundation_vit import CLIP_vit_base_patch32_224, CLIP_vit_base_p ...@@ -75,7 +75,7 @@ from .model_zoo.foundation_vit import CLIP_vit_base_patch32_224, CLIP_vit_base_p
from .model_zoo.convnext import ConvNeXt_tiny, ConvNeXt_small, ConvNeXt_base_224, ConvNeXt_base_384, ConvNeXt_large_224, ConvNeXt_large_384 from .model_zoo.convnext import ConvNeXt_tiny, ConvNeXt_small, ConvNeXt_base_224, ConvNeXt_base_384, ConvNeXt_large_224, ConvNeXt_large_384
from .model_zoo.nextvit import NextViT_small_224, NextViT_base_224, NextViT_large_224, NextViT_small_384, NextViT_base_384, NextViT_large_384 from .model_zoo.nextvit import NextViT_small_224, NextViT_base_224, NextViT_large_224, NextViT_small_384, NextViT_base_384, NextViT_large_384
from .model_zoo.cae import cae_base_patch16_224, cae_large_patch16_224 from .model_zoo.cae import cae_base_patch16_224, cae_large_patch16_224
from .model_zoo.cvt import CvT_13_224, CvT_13_384, CvT_21_224, CvT_21_384 from .model_zoo.cvt import CvT_13_224, CvT_13_384, CvT_21_224, CvT_21_384, CvT_W24_384
from .variant_models.resnet_variant import ResNet50_last_stage_stride1 from .variant_models.resnet_variant import ResNet50_last_stage_stride1
from .variant_models.resnet_variant import ResNet50_adaptive_max_pool2d from .variant_models.resnet_variant import ResNet50_adaptive_max_pool2d
......
...@@ -26,6 +26,7 @@ MODEL_URLS = { ...@@ -26,6 +26,7 @@ MODEL_URLS = {
"CvT_13_384": "", # TODO "CvT_13_384": "", # TODO
"CvT_21_224": "", # TODO "CvT_21_224": "", # TODO
"CvT_21_384": "", # TODO "CvT_21_384": "", # TODO
"CvT_W24_384": "", # TODO
} }
__all__ = list(MODEL_URLS.keys()) __all__ = list(MODEL_URLS.keys())
...@@ -655,3 +656,37 @@ def CvT_21_384(pretrained=False, use_ssld=False, **kwargs): ...@@ -655,3 +656,37 @@ def CvT_21_384(pretrained=False, use_ssld=False, **kwargs):
_load_pretrained( _load_pretrained(
pretrained, model, MODEL_URLS["CvT_21_384"], use_ssld=use_ssld) pretrained, model, MODEL_URLS["CvT_21_384"], use_ssld=use_ssld)
return model return model
def CvT_W24_384(pretrained=False, use_ssld=False, **kwargs):
msvit_spec = dict(
INIT='trunc_norm',
NUM_STAGES=3,
PATCH_SIZE=[7, 3, 3],
PATCH_STRIDE=[4, 2, 2],
PATCH_PADDING=[2, 1, 1],
DIM_EMBED=[192, 768, 1024],
NUM_HEADS=[3, 12, 16],
DEPTH=[2, 2, 20],
MLP_RATIO=[4.0, 4.0, 4.0],
ATTN_DROP_RATE=[0.0, 0.0, 0.0],
DROP_RATE=[0.0, 0.0, 0.0],
DROP_PATH_RATE=[0.0, 0.0, 0.3],
QKV_BIAS=[True, True, True],
CLS_TOKEN=[False, False, True],
POS_EMBED=[False, False, False],
QKV_PROJ_METHOD=['dw_bn', 'dw_bn', 'dw_bn'],
KERNEL_QKV=[3, 3, 3],
PADDING_KV=[1, 1, 1],
STRIDE_KV=[2, 2, 2],
PADDING_Q=[1, 1, 1],
STRIDE_Q=[1, 1, 1])
model = ConvolutionalVisionTransformer(
in_chans=3,
act_layer=QuickGELU,
init=msvit_spec.get('INIT', 'trunc_norm'),
spec=msvit_spec,
**kwargs)
_load_pretrained(
pretrained, model, MODEL_URLS["CvT_21_384"], use_ssld=use_ssld)
return model
...@@ -124,7 +124,7 @@ DataLoader: ...@@ -124,7 +124,7 @@ DataLoader:
order: '' order: ''
sampler: sampler:
name: DistributedBatchSampler name: DistributedBatchSampler
batch_size: 256 batch_size: 128
drop_last: False drop_last: False
shuffle: False shuffle: False
loader: loader:
......
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 300
print_batch_step: 50
use_visualdl: False
# used for static mode and model export
image_shape: [3, 384, 384]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
update_freq: 2 # for 8 cards
# model architecture
Arch:
name: CvT_13_384
class_num: 1000
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.05
no_weight_decay_name: pos_embed cls_token .bias
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 2e-3 # lr 2e-3 for total_batch_size 2048
eta_min: 1e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
by_epoch: True
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- RandCropImage:
size: 384
interpolation: bicubic
backend: pil
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
img_size: 384
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.25
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
batch_transform_ops:
- OpSampler:
MixupOperator:
alpha: 0.8
prob: 0.5
CutmixOperator:
alpha: 1.0
prob: 0.5
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: True
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- ResizeImage:
size: 384
interpolation: bicubic
backend: pil
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- ResizeImage:
size: 384
interpolation: bicubic
backend: pil
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Eval:
- TopkAcc:
topk: [1, 5]
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 300
print_batch_step: 50
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
update_freq: 2 # for 8 cards
# model architecture
Arch:
name: CvT_21_224
class_num: 1000
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.1
no_weight_decay_name: pos_embed cls_token .bias
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 1e-3 # lr 1e-3 for total_batch_size 1024
eta_min: 1e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
by_epoch: True
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- RandCropImage:
size: 224
interpolation: bicubic
backend: pil
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: RASampler
batch_size: 64
drop_last: True
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- ResizeImage:
resize_short: 256
interpolation: bicubic
backend: pil
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- ResizeImage:
resize_short: 256
interpolation: bicubic
backend: pil
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Eval:
- TopkAcc:
topk: [1, 5]
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 300
print_batch_step: 50
use_visualdl: False
# used for static mode and model export
image_shape: [3, 384, 384]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
update_freq: 2 # for 8 cards
# model architecture
Arch:
name: CvT_21_384
class_num: 1000
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.1
no_weight_decay_name: pos_embed cls_token .bias
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 1e-3 # lr 1e-3 for total_batch_size 1024
eta_min: 1e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
by_epoch: True
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- RandCropImage:
size: 384
interpolation: bicubic
backend: pil
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
img_size: 384
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.25
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
batch_transform_ops:
- OpSampler:
MixupOperator:
alpha: 0.8
prob: 0.5
CutmixOperator:
alpha: 1.0
prob: 0.5
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: True
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- ResizeImage:
size: 384
interpolation: bicubic
backend: pil
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- ResizeImage:
size: 384
interpolation: bicubic
backend: pil
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Eval:
- TopkAcc:
topk: [1, 5]
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 300
print_batch_step: 50
use_visualdl: False
# used for static mode and model export
image_shape: [3, 384, 384]
save_inference_dir: ./inference
# training model under @to_static
to_static: False
update_freq: 2 # for 8 cards
# model architecture
Arch:
name: CvT_W24_384
class_num: 1000
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: AdamW
beta1: 0.9
beta2: 0.999
epsilon: 1e-8
weight_decay: 0.1
no_weight_decay_name: pos_embed cls_token .bias
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 1e-3 # lr 1e-3 for total_batch_size 1024
eta_min: 1e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
by_epoch: True
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- RandCropImage:
size: 384
interpolation: bicubic
backend: pil
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
img_size: 384
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.25
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
batch_transform_ops:
- OpSampler:
MixupOperator:
alpha: 0.8
prob: 0.5
CutmixOperator:
alpha: 1.0
prob: 0.5
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: True
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/ILSVRC2012/
cls_label_path: ./dataset/ILSVRC2012/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- ResizeImage:
size: 384
interpolation: bicubic
backend: pil
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: docs/images/inference_deployment/whl_demo.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
backend: pil
- ResizeImage:
size: 384
interpolation: bicubic
backend: pil
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
topk: 5
class_id_map_file: ppcls/utils/imagenet1k_label_list.txt
Metric:
Eval:
- TopkAcc:
topk: [1, 5]
...@@ -43,6 +43,7 @@ from ppcls.data.dataloader.DistributedRandomIdentitySampler import DistributedRa ...@@ -43,6 +43,7 @@ from ppcls.data.dataloader.DistributedRandomIdentitySampler import DistributedRa
from ppcls.data.dataloader.pk_sampler import PKSampler from ppcls.data.dataloader.pk_sampler import PKSampler
from ppcls.data.dataloader.mix_sampler import MixSampler from ppcls.data.dataloader.mix_sampler import MixSampler
from ppcls.data.dataloader.multi_scale_sampler import MultiScaleSampler from ppcls.data.dataloader.multi_scale_sampler import MultiScaleSampler
from ppcls.data.dataloader.ra_sampler import RASampler
from ppcls.data import preprocess from ppcls.data import preprocess
from ppcls.data.preprocess import transform from ppcls.data.preprocess import transform
......
import math
import numpy as np
from paddle.io import DistributedBatchSampler
class RASampler(DistributedBatchSampler):
"""
based on https://github.com/facebookresearch/deit/blob/main/samplers.py
"""
def __init__(self,
dataset,
batch_size,
num_replicas=None,
rank=None,
shuffle=False,
drop_last=False,
num_repeats: int=3):
super().__init__(dataset, batch_size, num_replicas, rank, shuffle,
drop_last)
self.num_repeats = num_repeats
self.num_samples = int(
math.ceil(len(self.dataset) * num_repeats / self.nranks))
self.total_size = self.num_samples * self.nranks
self.num_selected_samples = int(
math.floor(len(self.dataset) // 256 * 256 / self.nranks))
def __iter__(self):
num_samples = len(self.dataset)
indices = np.arange(num_samples).tolist()
if self.shuffle:
np.random.RandomState(self.epoch).shuffle(indices)
self.epoch += 1
indices = [ele for ele in indices for i in range(self.num_repeats)]
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
indices = indices[self.local_rank:self.total_size:self.nranks]
assert len(indices) == self.num_samples
_sample_iter = iter(indices[:self.num_selected_samples])
batch_indices = []
for idx in _sample_iter:
batch_indices.append(idx)
if len(batch_indices) == self.batch_size:
yield batch_indices
batch_indices = []
if not self.drop_last and len(batch_indices) > 0:
yield batch_indices
def __len__(self):
num_samples = self.num_selected_samples
num_samples += int(not self.drop_last) * (self.batch_size - 1)
return num_samples // self.batch_size
===========================train_params===========================
model_name:CvT_13_384
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/CvT/CvT_13_384.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/CvT/CvT_13_384.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/CvT/CvT_13_384.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
inference_dir:null
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.interpolation=bicubic -o PreProcess.transform_ops.0.ResizeImage.backend=pil
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,384,384]}]
===========================train_params===========================
model_name:CvT_21_224
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/CvT/CvT_21_224.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/CvT/CvT_21_224.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/CvT/CvT_21_224.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
inference_dir:null
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.interpolation=bicubic -o PreProcess.transform_ops.0.ResizeImage.backend=pil
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,224,224]}]
===========================train_params===========================
model_name:CvT_21_384
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/CvT/CvT_21_384.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/CvT/CvT_21_384.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/CvT/CvT_21_384.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
inference_dir:null
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.interpolation=bicubic -o PreProcess.transform_ops.0.ResizeImage.backend=pil
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,384,384]}]
===========================train_params===========================
model_name:CvT_W24_384
python:python3.7
gpu_list:0|0,1
-o Global.device:gpu
-o Global.auto_cast:null
-o Global.epochs:lite_train_lite_infer=2|whole_train_whole_infer=120
-o Global.output_dir:./output/
-o DataLoader.Train.sampler.batch_size:8
-o Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/CvT/CvT_W24_384.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/CvT/CvT_W24_384.yaml
null:null
##
===========================infer_params==========================
-o Global.save_inference_dir:./inference
-o Global.pretrained_model:
norm_export:tools/export_model.py -c ppcls/configs/ImageNet/CvT/CvT_W24_384.yaml
quant_export:null
fpgm_export:null
distill_export:null
kl_quant:null
export2:null
inference_dir:null
infer_model:../inference/
infer_export:True
infer_quant:Fasle
inference:python/predict_cls.py -c configs/inference_cls.yaml -o PreProcess.transform_ops.0.ResizeImage.interpolation=bicubic -o PreProcess.transform_ops.0.ResizeImage.backend=pil
-o Global.use_gpu:True|False
-o Global.enable_mkldnn:False
-o Global.cpu_num_threads:1
-o Global.batch_size:1
-o Global.use_tensorrt:False
-o Global.use_fp16:False
-o Global.inference_model_dir:../inference
-o Global.infer_imgs:../dataset/ILSVRC2012/val/ILSVRC2012_val_00000001.JPEG
-o Global.save_log_path:null
-o Global.benchmark:False
null:null
null:null
===========================infer_benchmark_params==========================
random_infer_input:[{float32,[3,384,384]}]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册