preprocess_op_det.h 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <glog/logging.h>
#include <yaml-cpp/yaml.h>

#include <iostream>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

D
dongshuilong 已提交
31
namespace Detection {
32 33

// Object for storing all preprocessed data
D
dongshuilong 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46
    class ImageBlob {
    public:
        // image width and height
        std::vector<float> im_shape_;
        // Buffer for image data after preprocessing
        std::vector<float> im_data_;
        // in net data shape(after pad)
        std::vector<float> in_net_shape_;
        // Evaluation image width and height
        // std::vector<float>  eval_im_size_f_;
        // Scale factor for image size to origin image size
        std::vector<float> scale_factor_;
    };
47 48

// Abstraction of preprocessing opration class
D
dongshuilong 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    class PreprocessOp {
    public:
        virtual void Init(const YAML::Node &item) = 0;

        virtual void Run(cv::Mat *im, ImageBlob *data) = 0;
    };

    class InitInfo : public PreprocessOp {
    public:
        virtual void Init(const YAML::Node &item) {}

        virtual void Run(cv::Mat *im, ImageBlob *data);
    };

    class NormalizeImage : public PreprocessOp {
    public:
        virtual void Init(const YAML::Node &item) {
            mean_ = item["mean"].as < std::vector < float >> ();
            scale_ = item["std"].as < std::vector < float >> ();
            is_scale_ = item["is_scale"].as<bool>();
        }

        virtual void Run(cv::Mat *im, ImageBlob *data);

    private:
        // CHW or HWC
        std::vector<float> mean_;
        std::vector<float> scale_;
        bool is_scale_;
    };

    class Permute : public PreprocessOp {
    public:
        virtual void Init(const YAML::Node &item) {}

        virtual void Run(cv::Mat *im, ImageBlob *data);
    };

    class Resize : public PreprocessOp {
    public:
        virtual void Init(const YAML::Node &item) {
            interp_ = item["interp"].as<int>();
            // max_size_ = item["target_size"].as<int>();
            keep_ratio_ = item["keep_ratio"].as<bool>();
            target_size_ = item["target_size"].as < std::vector < int >> ();
        }

        // Compute best resize scale for x-dimension, y-dimension
        std::pair<double, double> GenerateScale(const cv::Mat &im);

        virtual void Run(cv::Mat *im, ImageBlob *data);

    private:
        int interp_ = 2;
        bool keep_ratio_;
        std::vector<int> target_size_;
        std::vector<int> in_net_shape_;
    };
107 108

// Models with FPN need input shape % stride == 0
D
dongshuilong 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    class PadStride : public PreprocessOp {
    public:
        virtual void Init(const YAML::Node &item) {
            stride_ = item["stride"].as<int>();
        }

        virtual void Run(cv::Mat *im, ImageBlob *data);

    private:
        int stride_;
    };

    class Preprocessor {
    public:
        void Init(const YAML::Node &config_node) {
            // initialize image info at first
            ops_["InitInfo"] = std::make_shared<InitInfo>();
            for (int i = 0; i < config_node.size(); ++i) {
                if (config_node[i]["DetResize"].IsDefined()) {
                    ops_["Resize"] = std::make_shared<Resize>();
                    ops_["Resize"]->Init(config_node[i]["DetResize"]);
                }

                if (config_node[i]["DetNormalizeImage"].IsDefined()) {
                    ops_["NormalizeImage"] = std::make_shared<NormalizeImage>();
                    ops_["NormalizeImage"]->Init(config_node[i]["DetNormalizeImage"]);
                }

                if (config_node[i]["DetPermute"].IsDefined()) {
                    ops_["Permute"] = std::make_shared<Permute>();
                    ops_["Permute"]->Init(config_node[i]["DetPermute"]);
                }

                if (config_node[i]["DetPadStrid"].IsDefined()) {
                    ops_["PadStride"] = std::make_shared<PadStride>();
                    ops_["PadStride"]->Init(config_node[i]["DetPadStrid"]);
                }
            }
        }

        void Run(cv::Mat *im, ImageBlob *data);

    public:
        static const std::vector <std::string> RUN_ORDER;

    private:
        std::unordered_map <std::string, std::shared_ptr<PreprocessOp>> ops_;
    };
157

D
dongshuilong 已提交
158
} // namespace Detection